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ABSTRACT 
 

The current investigation communicates the flow and heat 
transfer characteristics of an electrically conducting 
micropolar-Casson fluid over a two-dimensional stretching 
surface with variable thermal conductivity and viscosity. 
Thermal radiation, viscous dissipation and heat source 
effects are also accounted for in the energy equation. The 
formulated equations of flow and heat transfer are converted 
from partial to ordinary differential equations using suitable 
similarity transformations while the dimensionless equations 
are solved by Runge-Kutta Fehlberg integration scheme. The 
effects of the physical parameters are publicized through 
graphs and validated by related published studies in the 
limiting situations. It is found from the investigation that there 
is accelerated flow due to the material micropolar term 
whereas the presence of Casson fluid and magnetic field 
terms decelerate the velocity. Besides, the surface 
temperature improves with a rise in the Casson fluid term, 
Eckert number and thermal conductivity parameter whereas 
the trend is reversed for micropolarity influence.  
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1. INTRODUCTION  
 
In recent times technology has permeated every facet of life even the classroom is not left out. 
The use of whatsapp, facebook, Twitter Telegram, Instagram is on the increase. This uction Fluid 
flow and heat transfer processes can be altered by the imposition of magnetic field in the flow 
regime. Magnetohydrodynamics (MHD) deals with the interaction of magnetic field and 
electrically conducting fluids. The application of such flow in diverse fields of applied sciences 
and engineering are huge. For instance, in metallurgical industries, magnetic field can be 
applied to heat up, pump, stir, levitate liquid metals and for the purification of molten metals 
from non-metallic inclusions, It is also useful in plasma, nuclear reactors, MHD generators and 
accelerators, boundary layer control in aerodynamics (Ibrahim and Makinde, 2015).  
 
The boundary layer flow of MHD over a stretching sheet has been reported by many researchers 
under different assumptions, configurations and category of fluids (see Qasim, 2013; Ahmad, 
et al., 2016; Mahanthesh et al., 2018; Ullah et al. 2020; Fatunmbi and Adeniyan, 2020). The 
simple micro-fluids theory formulated by Eringen (1964) characterizes fluids with micro-
constituents. The theory deals with isotropic viscous fluids with micro-elements and 
micromotion which manifest certain microscopic influences arising from the local structure and 
micromotion of the fluid parcels. Besides, these fluids have the ability to support stress and 
body moments with the effects of rotation inertia. For the application of simple micro-fluid 
concept to the cases of real flow situations, Eringen (1966) simplified further the concept of 
simple micro-fluids to formulate a subclass of microfluids known as micropolar fluid. Micropolar 
fluid characterizes fluids with rigid, randomly oriented particles suspended in a viscous medium 
such as polymeric fluids, liquid crystals, where particles deformation is neglected (Lukaszewicz, 
1999).  
 
These rigid particles contained in a small volume can spin about the centroid of the volume 
element. It also defines a substantial generalization of the Navier-Stokes model and open up a 
new field of potential applications in extrusion of polymer fluids, the cooling of metallic plate in 
water bath, synovial lubrication, arterial blood flows, sediment transport in rivers, etc. (Rahman, 
2009; Reena and Rana, 2009). Fluids that can be categorized as micropolar fluids are 
polymeric fluids, fluid suspensions, animal blood, liquid crystals, colloidal fluids, etc (Ahmadi, 
1976; Hayat, Mustafa and Obaidat, 2011). The flow and heat transfer of micropolar fluid have 
been studied by many researchers on different geometries, assumptions and conditions (see  
Mahmoud, 2007; Salawu and Fatunmbi, 2017; Keimanesh and Aghanajafi, 2017; Fatunmbi 
and Adeniyan, 2018; Fatunmbi and Okoya, 2020). 
 
The Casson fluid model describes a shear thinning fluid which exhibits yield stress attribute. It 
posses a property of infinite viscosity at zero rate of shear stress and zero viscosity at infinite 
rate of shear stress, Das et al. (2018). Whenever the yield stress is greater than the shear stress 
the fluid characterizes solid nature but when the yield stress is lower than the applied shear 
stress the fluid begins to flow. This model was invented by Casson (1959) while investigating a 
flow equation for pigment oil-suspensions of printing ink. Bird et al. (1983) studied the rheology 
and transport of visco-plastic materials and communicated the fact that the concept of Casson 
fluid fits a plastic fluid model with shear thinning attributes.  
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This model has become prominent among other non-Newtonian fluids due to its consequential 
applications. The suitability of this model to adequately describe the rheological behaviour of 
various ingredients as paints, lubricants, jelly,tomato sauce, blood, honey, etc has been 
investigated researchers Casson (1959). For low shear rates, the Casson fluid simulates 
accurately the flow attributes of blood. Also, the manifestation of protein, fibrinogen as well as 
globulin in aqueous base plasma, red blood cells portrays human blood as a good example of 
Casson fluid. These applications have aroused the interest of researchers and scientists to 
study such a fluid on various configurations and conditions. 
 
Vajravelu et al. (2016) analytically reported a mixed convective motion of Casson fluid 
configured in a vertically stretched sheet with non-uniform thermal conductivity and prescribed 
surface temperature condition. Das et al (2018) examined the transport of Casson fluid over an 
exponentially stretching sheet with the impact of thermal radiation and entropy generation while 
Krishna et al (2018) analyzed the motion of a reactive Casson fluid in a porous stretching 
surface. The authors reported that the reactions of Casson parameter and magnetic field term 
are similar in respect to the velocity profile. Recently, An investigation of hydromagnetic Casson 
nanofluid in a porous medium was conducted by Fatunmbi and Okoya (2021) with the impact 
of nonlinear Boussinesq approximation and variable thermal conductivity near a stagnation 
point. It was pointed out that the Casson fluid material term enhances the thermal field and 
improved the viscous drag. Likewise, the motion of a radiative Casson fluid over a convectively 
heated permeable sheet with the impact of Joule heating and wall slip was recently examined 
by Omotola and Fatunmbi (2021). 
 

The blend of micropolar and Casson fluid properties can be referred to as the micropolar-Casson 
fluid. Such a composition becomes so crucial in applications particularly in bio-engineering 
processes, metallurgy, food production, production of pharmaceutical products, paints, 
synthetic lubricants, biological fluids, e.g. blood flow in human body and drilling operations. 
Mehmood et al. (2017) numerically investigated such a blend over a convectively heated 
stretching material with internal heat source whereas the examination of such mixture over a 
stretching surface characterized by inclined magnetic field and viscous dissipation was done by 
Iqbal et al. (2017). It was stated by the authors that micropolar material parameter raises the 
heat transfer and the viscous drag. The aforementioned authors however studied the case of 
uniform viscosity and thermal conductivity. For better and accurate prediction of the flow 
behaviour, it is imperative to incorporate temperature-dependent flow properties. 
 
The aim of this study therefore is to investigate the flow of an electrically conducting micropolar-
Casson fluid over a stretchable material with the effects of temperature-dependent viscosity 
and thermal conductivity, viscous dissipation and internal heat generation in the presence of 
isothermal wall condition. The applications of this study to various areas in industries and 
engineering as mentioned above have induced its investigation. The main equations are solved 
numerically via Runge-Kutta Fehlberg scheme while the results are presented in tables and 
graphs with appriopriate discussion.. 
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 2.  PROBLEM FORMULATION 
 
Consider, an incompressible and steady flow and heat transfer characteristics of an electrically 
conducting micropolar-Casson nanofluid flow configured in a two-dimensional stretching 
material in a porous medium. Taking the coordinate as (𝑥, 𝑦) having a corresponding velocity 
components 𝑢 and 𝑣 where the flow is directed towards the 𝑥 axis with 𝑦 axis being normal to 
it as shown in Figure. 1. An external magnetic field of uniform strength is applied normal to the 
flow direction while the impact of the induced magnetic field and electric field is assumed to be 
negligible on the account of significantly low Reynolds number. It is assumed that the viscosity 
and thermal conductivity vary linearly with temperature whereas other fluid properties are 
assumed to be isotropic and uniform. The impact of thermal radiation, viscous dissipation and 
internal heat generation are incorporated in the heat equation.  

 
Figure 1. Flow Configuration 

 
The stress tensor and couple stress tensor relations for isotropic micropolar fluid are expressed 
as (see Eringen, 1966; Lukaszewicz, 1999; Chen  et al., 2011): 
 

 𝜏௜௝ = ൫−𝑃 + 𝜆௥𝑣௞,௞൯𝛿௜௝ + 𝜇൫𝑣௜,௝ + 𝑣௝,௜൯ + 𝜅൫𝑣௝,௜ − 𝑣௜,௝൯ − 𝜅𝜖௞௜௝𝑁௞ , (1) 
  𝐶௜௝ = 𝑐௢𝑁௞,௞𝛿௜௝ + 𝑐ௗ൫𝑁௜,௝ + 𝑁௝,௜൯ + 𝑐௔൫𝑁௜,௝ − 𝑁௝,௜൯. (2) 



 
        
 
 
 

101 

Proceedings of the 28th  SMART-iSTEAMS 
Interteriary Multidisciplinary Conference   

American International University West Africa 
The Gambia  

 

 
 Where 𝜏௜௝

௦ = ൫−𝑃 + 𝜆௥𝑣௞,௞൯𝛿௜௝ + 𝜇൫𝑣௜,௝ + 𝑣௝,௜൯ is the symmetric part of the stress tensor 𝜏௜௝  
which denotes the tress tensor for the classical hydrodynamics. Also, 𝜏௜௝  is the Cauchy stress 
tensor, 𝑃 is the pressure, 𝜆௥ and 𝜇 are second viscosity coefficient and dynamic viscosity 
respectively. 𝜅 is the dynamic microrotation viscosity, 𝑐௢, 𝑐௔ and 𝑐ௗ are the coefficients of 
angular viscosity, 𝑣௜ , 𝑁௞ and 𝜖௜௝௞ are the velocity component, angular velocity component and 
the alternating/permutation stress tensor, 𝐶௜௝ is the couple stress tensor, 𝛿௜௝  is the usual 

Kronecker delta, 𝑣௜,௝ =
డ௩೔

డ௫ೕ
, 𝑁௜,௝ =

డே೔

డ௫ೕ
 are the partial derivatives with respect to coordinate 

(𝑥ଵ, 𝑥ଶ, 𝑥ଷ). The following inequalities must hold for Eq. (1) to remain valid: 𝜇 ≥ 0, 3𝜆 + 2𝜇 ≥
0, 𝜅 ≥ 0. 
Likewise, the rheological equation of an isotropic, incompressible flow of Casson fluid is 
specified as  

𝑆௜௝ = ቀ𝜇஻ +
௉೤

√ଶగ
ቁ 2𝑒௜௝; 𝜋 > 𝜋௖,    𝑆௜௝ = ൬𝜇஻ +

௉೤

ඥଶగ೎
൰ 2𝑒௜௝; 𝜋 < 𝜋௖ , (3) 

 
 where 𝑆௜௝ denotes the Cauchy stress tensor, 𝑃௬ stands for the yield stress of the fluid described 
as  

 𝑃௬ =
ఓಳ√ଶగ

ఉ
 (4) 

 
 Also, 𝜇஻ defines the plastic dynamic viscosity of the non-Newtonian fluid while 𝜋 depicts the 
product of deformation rate with itself (𝜋 = 𝑒௜௝𝑒௜௝), 𝜋௖ denotes the critical value of the product 
of the component of the deformation rate with itself which is based on the non-Newtonian 
model. Similarly, one can write  

 𝜇 = 𝜇஻ +
௉೤

√ଶగ
, (5) 

 
 and on substituting Eq.(4) into (5) results to  
 

 𝜇 = 𝜇஻ ቀ1 +
ଵ

ఉ
ቁ ⇒ 𝜗 =

ఓಳ

ఘ
ቀ1 +

ଵ

ఉ
ቁ, (6) 

 

 where 𝜗 is the kinematic viscosity and 𝛽 = 𝜇஻
√ଶగ

௉೤
 describes the Casson fluid parameter. Now, 

on the assumption that the viscosity and thermal conductivity are temperature-dependent and 
that the medium is porous, the partial differential equations governing the flow and heat 
transfer of Micropolar-Casson fluid model can be written as  
 

 
డ௨

డ௫
+

డ௩

డ௬
= 0, (7) 

   

𝑢ത
డ௨

డ௫
+ 𝑣

డ௨

డ௬
=

ଵ

ఘಮ
ቂቀ1 +

ଵ

ఉ
ቁ

డ

డ௬
ቀ𝜇஻ಮ

డ௨

డ௬
ቁቃ +

఑

ఘಮ

డమ௨

డ௬మ +
఑

ఘ

డே

డ௬
−

ଵ

ఘಮ
൤

ఓಳಮ

௄೛
ቀ1 +

ଵ

ఉ
ቁ + 𝜅൨ 𝑢 −

ఙ஻೚
మ

ఘಮ
𝑢, (8) 
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 𝑢
డே

డ௫
+ 𝑣

డே

డ௬
=

ఊ

ఘಮ௝

డమே

డ௬మ −
఑

ఘಮ௝
ቀ2𝑁 +

డ௨

డ௬
ቁ, (9) 

 

 𝑢
డ்

డ௫
+ 𝑣

డ்

డ௬ത
=

ଵ

ఘಮ஼೛

డ

డ௬
ቂቀ𝑘(𝑇) +

ଵ଺ ಮ்
య ఙ⋆

ଷ௞⋆ ቁ
డ்

డ௬
ቃ +

ଵ

ఘಮ஼೛
ቂ𝜇஻ಮ

(𝑇) ቀ1 +
ଵ

ఉ
ቁ + 𝜅ቃ ቀ

డ௨

డ௬
ቁ

ଶ
+

ொ⋆(்ି ಮ்)

ఘಮ஼೛
.

 (10) 
 
 The associated boundary conditions are:  
 

 
𝑦 = 0: 𝑢 = 𝑢௪ = 𝑎𝑥, 𝑣 = 0, 𝑁 = −𝑛

డ௨

డ௬
, 𝑇 = 𝑇௪

𝑦 ⟶ ∞: 𝑢 ⟶ 0, 𝑁 ⟶ 0, 𝑇 ⟶ 𝑇ஶ,
 (11) 

 
 where 𝑢 and 𝑣 are the velocity components in 𝑥 and 𝑦 directions respectively, 𝑎 is constant >
0. Also, 𝜌 is the fluid density, 𝜅 is the vortex or microrotation viscosity, 𝑇 is the fluid temperature, 
𝑁 is the component of microrotation whose direction of rotation is in 𝑥𝑦 plane, 𝐵௢ is the 
magnetic field intensity, 𝑗 indicates the microinertia density, 𝐶௣ is the specific heat at constant 
pressure, 𝑇௪ is the temperature of the stretching sheet, 𝑇ஶ is the free stream temperature, 𝑞௥ 
radiative heat flux, 𝑄⋆ is the volumetric rate of heat generation/absorption and 𝐾௣ is the 
permeability of the porous medium. Similarly, 𝑛 is a surface boundary parameter with 0 ≤ 𝑛 ≤
1. The case when 𝑛 = 0 corresponds to 𝑁 = 0, this represents no-spin condition i.e. strong 
concentration such that the micro-particles close to the wall are unable to rotate.  
 

The case 𝑛 =
ଵ

ଶ
, indicates weak concentration of micro-particles and the vanishing of anti-

symmetric part of the stress tensor and the case 𝑛 = 1 represents turbulent boundary layer 
flows. Following previous authors, it is reasonable to consider the temperature-dependent 
viscosity and thermal conductivity model as considered by Layek et al. (2005); Salem and Fathy 
(2012); Fatunmbi et al (2020). Hence, the plastic dynamic viscosity and thermal conductivity 
variation with temperature are expressed respectively given in Eq. (12) as  
 

 𝜇஻(𝑇) = 𝜇஻ಮ
[1 + 𝜁(𝑇௪ − 𝑇)], 𝑘(𝑇) = 𝑘ஶ[1 + 𝜖(𝑇 − 𝑇ஶ)] (12) 

 
 Here 𝜇஻ಮ

 is the fluid viscosity at reference temperature, 𝑘ஶ is the thermal conductivity of the 
fluid far away from the surface sheet, 𝜁 and 𝜖 are constants. Introducing the similarity 
transformations variables and stream functions (11) into the governing equations.  
 

𝜂 = 𝑦 ቀ
௔

ఔಮ
ቁ

ଵ/ଶ
, 𝜓 = 𝑓(𝜂)𝑥(𝑎𝜈)ଵ/ଶ, 𝑁 = 𝑎𝑥𝑔(𝜂) ቀ

௔

ఔ
ቁ

భ

మ
, 𝜃 =

்ି ಮ்

்ೢ ି ಮ்
, 𝑢 =

డట

డ௬
, 𝑣 = −

డట

డ௫
 (13) 

 
 Then, the continuity equation (7) is satisfied in view of Eq. (13) while Eqs. (8-10) taking 
cognizance of Eq. (10) transform to ordinary differential equations as listed below.  
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2.1 The Transformed Equations 

  
ቀ1 +

ଵ

ఉ
ቁ [(1 + 𝜉 − 𝜉𝜃 + 𝐾)𝑓′′′ − 𝜉𝜃′𝑓′′ − 𝐷𝑎(1 + 𝜉 − 𝜉𝜃)𝑓′ − 𝑀𝑓′] − 𝑓′ଶ + 𝑓𝑓′′ + 𝐾𝑔′ = 0, (14) 

  
 (1 + 𝐾/2)𝑔′′ + 𝑓𝑔′ − 𝑓′𝑔 − 𝐾(2𝑔 + 𝑓′′) = 0, (15) 

  

 
ଵ

௉௥
(1 + ℎ𝜃 + 𝑅)𝜃′′ + ℎ𝜃′ଶ + 𝑓𝜃′ + ቀ1 +

ଵ

ఉ
ቁ (1 + 𝜉 − 𝜉𝜃 + 𝐾)𝑓′′ଶ𝐸𝑐 + 𝐵𝜃. (16 

 The conditions at the boundary transmute to  
 

 
𝑓′(0) = 1, 𝑓(0) = 0, 𝑔 = 𝑛𝑓′′(0), 𝜃(0) = 1

𝑓ᇱ(∞) = 0, 𝜃(∞) = 0, 𝑔(∞) → 0.
 (17) 

 
 Where 𝜉 = 𝜁(𝑇௪ − 𝑇ஶ) defines the viscosity parameter, ℎ = 𝜖(𝑇௪ − 𝑇ஶ) describes the thermal 

conductivity term, 𝐾 = 𝜅/𝜇஻ಮ
 indicates the micropolar material parameter, 𝐷𝑎 =

ణ

௔௄೛
 denotes 

the Darcy parameter, 𝑀 =
ఙ஻బ

మ

௔ఘಮ
 defines the magnetic field term, 𝑃𝑟 =

ఓಮ஼೛

௞ಮ
 is the Prandtl 

number, 𝐸𝑐 =
௨ೢ

మ

஼೛(்௪ି ಮ்)
 indicates the Eckert number and 𝐵 =

ொ⋆

௔஼೛
 describes the heat source 

parameter. The following quantities namely; the skin friction coefficient and the local Nusselt 
number draw the attention of the engineering community . These quantities are respectively 
described as:  
 

 𝐶௙௫ =
ఛೢ

ఘಮ௎ೢ
మ , 𝑁𝑢௫ =

௫௤ೢ

௞(்ೢ ି ಮ்)
, (18) 

 
 

 where 𝜏௪ indicates the shear stress while 𝑞௪ defines the heat flux at the surface. Here,  
 

 𝜏௪ = ൬𝜇 +
௉೤

ඥଶగ೎
൰

డ௨

డ௬
+ 𝜅𝑁ฬ

௬ୀ଴

, 𝑞௪ = − ቀ𝑘ஶ +
ଵ଺்యఙ⋆

ଷ௞⋆ ቁ
డ்

డ௬
ቚ

௬ୀ଴
, (19) 

 
 in view of equations (13) and (19), the quantities in (18) orderly yields (20-21)  
 

 𝐶௙௫ = ቀ(1 +
ଵ

ఉ
)(1 + (1 − 𝑔)𝐾)ቁ 𝑅𝑒௫

ିଵ/ଶ
𝑓′′(0), (20) 

  

 𝑁𝑢௫ = −[1 + 𝑅(1 + 𝜃(0))]𝑅𝑒௫
ଵ/ଶ

𝜃′(0), (21) 
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3 NUMERICAL METHOD WITH VALIDATION 
 
The system of Eqs. (14-17) constitutes a nonlinear boundary value problem which the solution 
has been sought numerically using the shooting technique alongside with Runge-Kutta-Fehlberg 
scheme. Due to its popularity in the open literature, we do communicate the detail description 
in this study. The details can be found in the work of (see Ali, 1994, Attili and Syam, 2008; Xu 
and Lee, 2013; Mabood and Das, 2016; Mahanthesh et al., 2018;).  
 
The default values used in this study are listed as 𝐾 = 𝑀 = 𝐷𝑎 = 0.5, 𝑅 = ℎ = 𝜉 = 𝐵 =
0.2, 𝐸𝑐 = 0.1, 𝑛 = 0.5 and 𝑃𝑟 = 0.72 unless otherwise specified in the graphs. To authenticate 
the accuracy of our numerical solution a comparison is carried out in Table 1 with some existing 
results in literature in the limiting condition and both solutions are found in good harmony. The 
comparison is carried out with the work of Chen (1998) and Qasim et al. (2013) for different 
values of Prandtl number 𝑃𝑟 when 𝐾 = 𝐸𝑐 = 𝑅 = 𝐷𝑎 = 𝑀 = ℎ = 𝜉 = 𝐵 = 0 and 𝛽 → ∞. The 
highest percentage relative difference is found to be 0.42%. 

 
 

 Table .1: Comparison of the values of the Nusselt number 𝑁𝑢௫ with existing studies for various 
values of 𝑃𝑟 

𝑃𝑟 Chen (1998) Present 

study 

|%𝑅𝐷| Qasim e al.  

(2013) 

Present 

study 

|%𝑅𝐷| 

       

0.72 0.46170 0.46368 0.42 0.46360 0.46368 0.02 

1.00 0.58010 0.58211 0.35 0.58202 0.58211 0.01 

3.00 1.16525 1.16535 0.01 1.16525 1.16535 0.01 

5.00 1.56805 1.56816 0.01 1.56805 1.56816 0.01 

7.00 1.89540 1.89551 0.01 1.89542 1.89551 0.00 

10.00 2.30800 2.30811 0.00 2.30800 2.30811 0.00 

100.00 7.76565 7.76576 0.00 7.75826 7.76576 0.10 

  
 
 
 
 

  



 
        
 
 
 

105 

Proceedings of the 28th  SMART-iSTEAMS 
Interteriary Multidisciplinary Conference   

American International University West Africa 
The Gambia  

 

 
Table 2: Computational values of the values of 𝐶୤୶ with variation in 𝐾, 𝛽, 𝜉, 𝐷𝑎 and 𝑀 
 

𝐾 𝛽 𝜉 𝐷𝑎 𝑀 𝐶௙௫ 
 

      
0.1 
0.3 
0.5 

0.1 0.2 0.4 0.5 0.6244414 
0.5454724 
0.4907923 

0.3 0.1 
0.3 
0.5 

0.2 0.4 0.5 0.6675712 
0.7892711 
0.8686437 

  0.1 
0.3 
0.5 

  0.6574750 
0.6772104 
0.6952372 

  0.2 0.1 
0.3 
0.7 

 0.4484146 
0.6046815 
0.8249991 

   0.4 0.3 
0.6 
0.8 

0.6571026 
0.6727449 
0.6829753 

0.0 ∞ 0.1 
0.3 
0.5 

 0.5 1.3827854 
1.3926768 
1.4026076 

  0.2 0.1 
0.3 
0.7 

 1.2739253 
1.2572062 
1.4920829 

   0.4 0.3 
0.6 
0.8 

1.3144136 
1.3219056 
1.4909093 

      
 
 
4.RESULTS AND DISCUSSION 
 
This section presents the graphical illustrations and the discussion of the effects of various 
physical parameters on the non-dimensional quantities namely: velocity, microrotation and 
temperature profiles.. Besides, the reaction of the skin friction coefficient 𝐶௙௫ to variations in 
some selected parameters, namely, micropolar parameter, Casson fluid parameter 𝛽, viscosity 
term 𝜉, Darcy number 𝐷𝑎 and magnetic field parameter 𝑀 are recorded in Table 2. From this 
table, it is clearly noticed that an increase in 𝐾 facilitates the reduction in the viscous drag such 
that 𝐶௙௫ is drastically reduced. However, there is a spontaneous increase in the skin friction 
coefficient 𝐶௙௫ as the value of 𝛽, 𝜉 𝐷𝑎 and 𝑀 improves. In the absence of the non-Newtonian 
fluids (𝐾=0, 𝛽 → ∞), the fluid becomes Newtonian. In this case, the skin friction coefficient is 
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examined and it is observed that the skin friction coefficient is higher for growth in 𝜉, 𝐷𝑎 and 𝑀 
as compared to the case of non-Newtonian fluid as noticed from the table.. 
 Figure 2 portrays the reaction of the velocity profile for variations in the viscosity parameter 𝜉 
in the presence of the Casson fluid parameter 𝛽.. Increasing the magnitude of  𝜉 makes the 
fluid to be more viscous and thereby creates higher resistance to the fluid motion and thereby 
decelerates the flow as seen in this figure. Similarly, there is a reduction in the fluid flow owing 
to a rise in 𝛽. This trend indicates that growth in 𝛽 dictates a fall in the velocity field due to a 
reduction in the yield stress as 𝛽 rises which in turn decelerates the motion of the fluid. In 
addition, a rise in 𝛽 empowers the plastic dynamic viscosity over the Casson fluid viscosity and 
at such, the flow is resisted. However, the temperature field reacts conversely with a rise in the 
viscosity parameter 𝜉 and 𝛽 as displayed in Fig. 3. The thermal boundary layer thickens with an 
increase in 𝜉 and in consequence, the temperature is raised. The resistance created due to fluid 
viscosity develops a frictional heating in the flow regime and thus provides additional heating 
leading to a rise in temperature. The microrotation of the fluid parcels also enhances due to a 
rise in 𝜉 as found in Fig. 4.  
 

Fig. 2 Effect 𝝃 and 𝜷 on velocity profile                  Fig. 3 Effect of 𝝃 and 𝜷 on temperature 
 
Figure 5 depicts the influence of material micropolar parameter 𝐾 on the velocity profile in the 
existence of the magnetic field term 𝑀. Clearly, the hydrodynamic boundary layer grows with 
rising 𝐾. A rise in 𝐾 depicts a fall in the in the dynamic viscosity and a rise in the microrotation 
viscosity 𝜅 and thus, the viscous force is reduced and the flow increases. On the hand, a rise in 
𝑀 decelerates the motion of the fluid due to the drag created by the Lorentz force by the 
imposition transverse magnetic field to an electrically conducting micropolar-Casson. The 
Lorentz force offers a drag in the fluid motion with the corresponding increase in 𝑀 and hence, 
the fluid velocity reduces. The temperature profiles fall for a rise in 𝐾 but develops with growth 
in 𝑀 due to friction in the fluid particles as a result of resistance created by the Lorentz force 
as seen in Fig. 6. The microrotation field shrinks with an increase in 𝐾 but grows with a ruse in 
the magnitude of 𝑀 as shown in Fig. 7. The microrotation field is augmented due to magnetic 
field influence.  
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            Fig. 4 Effects 𝜉 and 𝛽 on microrotation          Fig. 5 Graph of 𝐾 and 𝑀 on velocity  
  

Fig. 6 Graph of 𝐾 and 𝑀 on temperature                 Fig. 7 Plot of 𝐾 and 𝑀 on microrotation 
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                   Fig. 8 Impact 𝜷 and 𝑲 on velocity                  Fig. 9 Plot of 𝜷 and 𝑲 on temperature 
 
The combined effects of micropolar-casson fluid on the velocity and temperature profiles are 
described in Figs. 8 and 9 respectively. Fig. 8 reveals the shrinking nature of the momentum 
boundary layer structure with a raise in the magnitude of 𝛽 in the presence or absence of the 
micropolar fluid influence. However, the micropolar fluid influence boosts the velocity profile. 
The heat distribution appreciates as 𝛽 grows as noted in Fig. 9. Meanwhile, the heat energy is 
lower in the presence of micropolar fluid material term 𝐾 as compares to its presence.  
 

            Fig. 10 Effects 𝑬𝒄 and 𝑲 on temperature               Fig. 11 Effect of 𝑬𝒄 and 𝜷 on temperature  
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 Fig. 12 Effects 𝒉 and 𝑹 on temperature         Fig. 13 Effects 𝑩 and 𝑷𝒓 on temperature 
  

 
Figures 10-11 respectively reveals the reaction of temperature profile to variation in the Eckert 
number 𝐸𝑐 in the presence of material micropolar term 𝐾 and in the presence of Casson fluid 
term 𝛽. Clearly, the thermal field soars in both cases as Ec rises in magnitude. This is due to 
the frictional heating on the account of friction between the fluid particles and the stretching 
sheet. However, the impact of 𝐾 and 𝛽 are opposite each other as shown in these figures. 
Similarly, the thermal field appreciates due to growth in the thermal conductivity ℎ and radiation 
𝑅 terms as illustrated in Fig. 12. The heat source term 𝐵 also boost the temperature profile due 
to additional heating as displayed in Fig. 13. However, a rise in the Prandtl numbe𝑟 𝑃𝑟 shrinks 
the thermal boundary layer and lowers the average temperature as portrayed in Fig. 13. 

5. CONCLUSION 
 
A numerical investigation has been carried out on the flow and heat transfer characteristics of 
magnetohydrodynamic micropolar-Casson fluid over a two-dimensional stretching sheet in a 
porous medium. The main equations of flow and heat dissipation are characterized by variable 
viscosity and thermal conductivity, thermal radiation, viscous dissipation and internal heat 
source. Similarity transformations variables are used to re-modelled the governing equations 
which are then solved by shooting technique associated with Runge-Kutta Fehlberg integration 
scheme. The obtained results strongly agree with published works in the related studies in 
literature as special cases of the present study. The impact of the physical parameters are 
shown in the various graphs and deliberated. Conclusively, it is revealed from the study that: 
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  There is a decelerated flow in the presence of Casson fluid 𝛽, viscosity parameter 𝜉. 
Growth in the Casson fluid parameter compels a rise in the viscous force due to a 
decrease in the yield stress as 𝛽 grow leading to a resistance in the fluid motion. 

 The micropolar material parameter 𝐾 enhances the fluid motion by the reduction in the 
strength of the dynamic plastic viscosity and a rise in the vortex viscosity. Conversely, 
the thermal field falls with growing values of 𝐾 leading to a cool surface.  

 The thermal boundary layer expands with growth in the viscosity parameter 𝜉 and 
Casson fluid material parameter 𝛽 and thus, the surface temperature improves as 𝜉 
uplifts, a frictional heating is developed in the flow regime which offers extra heating in 
the thermal field.  

 The surface temperature rises by a rise in Ec, radiation term 𝑅 and internal heat source 
𝐵 but an increase in the Prandtl number 𝑃𝑟 behaves contrary on the thermal field. The 
temperature can be cooled in the presence of 𝑃𝑟. 
.  
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