

Comparative Analysis of Five Statistical Packages' Features and Output

Oluwakemi Sade Ayodele & Alabi Taiye John

Department of Computer Science Kogi State Polytechnic Lokoja, Kogi State, Nigeria **E-mail**: Kemtemmy2009@gmail.com **Phone**: +234806 980 4373

ABSTRACT

In this new era of 'big data', the use of statistical software has become inevitable and choosing the right data analysis software is becoming an important aspect of research in virtually any field of human endeavour. Statistical packages are collections of software designed to aid in statistical analysis and data exploration. The vast majority of quantitative and statistical analysis relies upon statistical packages for its execution. An understanding of statistical packages is very essential. Statistical analysis can be implemented using programming languages like C++, Java, and FORTRAN e.t.c but statistical packages are time, effort and cost saving also providing a common interface for data manipulation, visualization and statistical analysis. However, statistical packages vary greatly with respect to accuracy and reliability and reported results may be dependent on the specific package and version. The aim of this paper therefore is to compare the features and output of regression analysis of five statistical packages: Microsoft Excel (2007), R package, SPSS, GraphPad and Stata. In this paper, regression analysis was used to determine the intercept and coefficients of a relation and the results obtained were tabulated. Therefore, for solution that requires high accuracy with speed, Microsoft excel is highly recommended.

Keywords: Data manipulation, Visualization, Data Exploration, Statistical Analysis

iSTEAMS Proceedings Reference Format

Oluwakemi Sade Ayodele & Alabi Taiye John (2019): Comparative Analysis of Five Statistical Packages' Features and Output. Proceedings of the 19th iSTEAMS Multidisciplinary Conference, The Federal Polytechnic, Offa, Kwara State, Nigeria. 7th – 9th August, 2019. Pp 115-124. <u>www.isteams.net/offa2019</u> - DOI Affix - https://doi.org/ 10.22624/AIMS/iSTEAMS-2019/V19N1P15

1. INTRODUCTION

A wide range of software statistical packages can be used to analyse data. These ranges from Access or Excel to dedicated packages such as SPSS, Stata and R for **statistical** analysis of quantitative data, Nvivo for **qualitative** (textual and audio-visual) data analysis (QDA), or ArcGIS for analysing **geospatial** data. In this paper, emphasis is made on the quantitative data Analysis. The five statistical packages used in this paper are <u>Statistical Packages for</u> <u>Social S</u>ciences (SPSS), **R** Package, GraphPad, Microsoft Excel and Statistics/Data Analysis (Stata).

Cavaliere (2015) observed that we live in "data era" where the use of statistical or data analysis software is inevitable in any research field. This means that the choice of the right software tool or platform is a strategic issue for a research department. Nevertheless, in many cases users of statistical software do not pay the right attention to a comprehensive and appropriate evaluation of what the intended use of the result of the data analysis is. Indeed, the choice still depends on few factors like, for instance, researcher's personal inclination, e.g., which software is already known, which shouldn't be the case.

According to Godsey (2019), it's often helpful if a statistical tool can perform some related methods. Often, you'll find that the method you chose doesn't quite work as well as you'd hoped, and what you learned in the process leads you to believe that a different method might work better. If your software tool doesn't have any alternatives, then you're either stuck with the first choice or you'll have to switch to another tool. This paper therefore is an eye opener to choosing the right statistical packages for regression analysis.

2. METHODOLOGY AND DATA PRESENTATION

In this paper, secondary data are used. The data for analysis is the results of an experiment on the impact of data size, execution time and power on energy consumption of sorting algorithm. (Ayodele & Oluwade, 2019). Below is the table of Quick Sort Algorithm implementation in C programming language used for this work.

Data Size	Average Execution Time(Sec)	Power (Watt)	Energy (Joule)
100,000	0.0594	2.42	0.143748
200,000	0.125	1.9	0.2375
300,000	0.1372	3.54	0.485688
400,000	0.2652	2.56	0.678912
500,000	0.3902	3.4	1.32668

Table 3.1: Quick Sort Algorithm Implementation In C

Statistical Packages

The following five Statistical packages are selected for comparison:

Microsoft Excel: This is part of the Microsoft Office suite of programs. Excel version 1.0 was first released in 1985, with the latest version Excel 2016. (Michael Lewis-Beck, 2004)

SPSS: SPSS stands for Statistical Package for the Social Sciences. It was one of the earliest statistical packages with Version 1 being released in 1968, well before the advent of desktop computers. It is now on Version 23.

R Package: This is a collection of R functions, complied code and sample data. They are stored under a directory called "library" in the R environment. By default, R installs a set of packages during installation. More packages are added later, when they are needed for some specific purpose. When we start the R console, only the default packages are available by default. Other packages which are already installed have to be loaded explicitly to be used by the R program that is going to use them. R is a free version of S-plus developed in 1996. Since then the original team has expanded to include dozens of individuals from all over the globe. (<u>https://www.tutorialspoint.com/r/r packages.htm</u>)

GraphPad: This is a commercial scientific 2D graphing and <u>statistics software</u> available for both Windows and Macintosh computers (https://en.wikipedia.org/wiki/GrapgPad_Software). GraphPad was developed by GraphPad Software, Inc.

Stata: This is a general-purpose statistical software package created in 1985 by StataCorp. Most of its users work in research, especially in the fields of economics, sociology, political science, biomedicine and epidemiology. Stata's capabilities include data management, statistical analysis, graphics, simulations, regression, and custom programming. It also has a system to disseminate user-written programs that lets it grow continuously (https://en.wikipedia.org/wiki/Stata).

3. IMPLEMENTATION AND DISCUSSION OF RESULTS

Implementation

Based on the conclusion from the experiments conducted in Ayodele & Oluwade (2019), varying the parameters values (Data size, algorithm implementation style and programming language) impacts the energy consumption with different evolution patterns (see table 4.1).

Let E= Energy, x_1 = Data Size, x_2 = Execution Time, x_3 = Power we have the following observations:

Two varying quantities are said to be in a relation of proportionality, if when they are multiplicatively connected to a constant, i.e, when either their ratio or their products yield a constant. The value of the constant is called the coefficient of proportionality. As Data Size increases, the Energy also increases, $E \propto x_i$, i = 1(1)3.

$$\Rightarrow E = \beta_0 + \sum_{i=1}^{3} \beta_i x_i, \beta_i \in \mathbb{R}$$
(4.1)

To get the coefficients β_0 , β_1 , β_2 and β_3 , the regression analysis implementation using Microsoft Excel, SPSS, GraphPad, R, and Stata Software were used. Therefore, the regression models for predicting the energy consumption (Energy Efficiency) were developed as a function of Data Size, Execution Time and Power using five (5) statistical packages (Microsoft Excel, SPSS, GraphPad, R, and Stata). Predictive Regression Energy Model for Quick Sort Using Data Size, Execution time and Power in Microsoft Excel, SPSS, GraphPad, R, and Stata Software

SUMMARY	OUTPUT		REGRESSIO	N ANALYS	SIS OF ITERA	TIVE QUIC	K SORT IN C			Nor	malP	roh	abilit	y Plot	
Regression	Statistics								1.5		inari	100		,	
Multiple F		8													
R Square	0.99752								× 1	1				-	
Adjusted F	0.99008								0.5	-				- a - a	-
Standard I	0.04683								0				2.5		Series1
Observati	5									10	30	50	70	90	
ANOVA											Sam	ple Perce	entile		
ALC: NA	df	SS	MS	F	gnificance	F				5					
Regressio	3	0.88149	0.29383	134.01	0.0634										
Residual	1	0.00219	0.00219												
Total	4	0.88368													
0	oefficients	andard Ern	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%							
Intercept	-0.4891	0.09768	-5.00743	0.12548	-1.73018	0.75198	-1.73018	0.75198							
X Variable	-1.4E-06	6.6E-07	-2.10466	0.28238	-9.8E-06	7E-06	-9.8E-06	7E-06				1			
X Variable	4.54121	0.72298	6.28125	0.10051	-4.64511	13.7275	-4.64511	13.7275							
X Variable	0.21558	0.04784	4.50663	0.13901	-0.39223	0.82339	-0.39223	0.82339							
RESIDUAL	OUTPUT				PROBABILI		-								
bservatior	Predicted Y	Residuals	dard Resid	uals	Percentile	Y									
1	0.16248	-0.01873	-0.80002		10	0.14375									
2	0.20841	0.02909	1.24237		30	0.2375									
3	0.4775	0.00819	0.3499		50	0.48569									
4	0.70764	-0.02872	-1.22685		70	0.67891									
5	1.3165	0.01018	0.4346		90	1.32668									

USING R

RStudio File Edit Code View Plots Session Build Debug Profile Tools Help	
• Addins • • Addins • • Addins • • Iterative merge CR × • Iterative merge java.R × • Iterative merge python.R × • Iterative quick CR × » • Iterative merge CR × • Iterative merge java.R × • Iterative merge python.R × • Iterative quick CR × » • Iterative merge CR × • Iterative merge java.R × • Iterative merge python.R × • Iterative quick CR × » • Iterative merge CR × • Iterative merge java.R × • Iterative merge python.R × • Iterative quick CR × » • Iterati	Environment History Connections Import Dataset • Import Dataset • Import Dataset • Global Environment • D num [1:5] 1e+05 2e+05 death num [1:4] 2 3 4 6 Ds num [1:5] 100 200 300 E num [1:5] 0.144 0.237 Eiqj num [1:5] 0.389 0.718 Et num [1:5] 0.056 0.0656 malaria num [1:5] 2.42 1.9 3.1 T num [1:5] 0.0594 0.121 Files Plots Packages Help Viewer New Folder © Delete Rename More • Mame Image: Anta Image: Anta Image: Anta Image: Anta
6:1 [Top Level] \$ Console ~/ Console ~/ D<-c(100000, 200000, 300000, 400000, 500000) > T<-c(0.0594, 0.125, 0.1372, 0.2652, 0.3902) > P<-c(2.42, 1.9, 3.54, 2.56, 3.4) > E<-c(0.143748, 0.2375, 0.485688, 0.678912, 1.32668) > Im(formula = E ~ D + T + P, data = cars) Call: Im(formula = E ~ D + T + P, data = cars) Coefficients: (Intercept) D T P -4.891e-01 -1.399e-06 4.541e+00 2.156e-01	 Rhistory 10.1.1.169.8799.bt 154 Steps to Revitalize your Sunday School and Keep yc 154 Steps to Revitalize your Sunday School and Keep yc 155 SEMESTER EXAM QUESTIONS 2013.docx 155 semester exam timetable 201420151.xlsx 1st semester exam timetable 20152016.xlsx 1st semester exam timetable 20152016.xlsx 2012 SESSION 2013 welafer.docx 2nd semester exam part tim.docx 2nd semester exam part tim.20132014.docx

Using GraphPad

💝 GraphPad InStat - [DATAS	ET1.ISD]					
🟈 File Edit Data Steps	Window Help					
		× 🖉	E			
7/30/2019 11:08 PM						
246 246						
15	Multiple Re	gression R	esults			
What equation fits	the data th	a hast?				
what equation iits	che data chi	e Dest:				
[A:] = -0.4891 -	-1.398E-06*	(B:1 + 4.5	41*[C:]			
+ 0.2156*[D:						
Variable	Coefficient	SE	95% Cont	fide	nce Interval	
(constant)	-0.4891					
B:					.843E-06to 7.045E-0	6
C:	4.541					
D:	0.2156	0.04784	-0.3922	to	0.8234	
How good is the fi	t?					
R squared = 99.75%						
This is the percen		iance in A	: explain	ned 1	by the model.	
into ito one percen	o or one var.	Lanoc In A	· capital		by one model.	
The P value is 0.0	634, conside:	red not qu	ite sign:	ific	ant.	
The P value answer						
If there were no	linear rela	tionship a	mong the	var	iables, <mark>w</mark> hat is	
the chance that	R squared wor	uld be tha	t <mark>high (</mark> d	or h	igher) by chance?	
Since P is high, t	he rest of th	he results	will be	of	little interest.	
Sum-of-squares	0.0021	93				
SD of residuals	0.0468	3				
R squared	0.9975					
Adjusted R squared	0.9901					
Multiple R	0.9988					
•						
Checklist	? What's next?	Steps:	1st 🔳	$\overline{\mathbf{x}}$	E 🖲 🖬 📥	₽

Using Stata

Re	view T 4 ×	. replace var4	= 3.54 in 3					
#	Command _rc	(1 real change	made)					
ŀ	set obs 1	. replace var4	= 2.56 in 4					
2	generate var1 = 0.1	(1 real change						
3	set obs 2							
1	replace var1 = 0.23	. replace var4 (1 real change						
5	set obs 3	(I rear change	made)					
5	replace var1 = 0.48	. regress var1	var2 var3 va	r4				
7	set obs 4							
3	replace var1 = 0.67	Source	SS	df	MS		Number of obs F(3, 1)	= 5 = 134.01
9	set obs 5	Model	.881487797	3.29	3829266		Prob > F	= 0.0634
10	replace var1 = 1.32	Residual	.002192593	1 .00	2192593		R-squared	= 0.9975
1	generate var2 = 100						Adj R-squared	
12	replace var2 = 2000	Total	.88368039	4 .22	0920098		Root MSE	= .04683
13	replace var2 = 3000	ļ						÷
4	replace var2 = 4000	var1	Coef.	Std. Err.	t	₽≻ t	[95% Conf.	Interval]
15	replace var2 = 5000							
16	generate var3 = 0.0	var2 var3	-1.40e-06 4.541212	6.65e-07	-2.10	0.282	-9.84e-06 -4.645109	7.05e-06 13.72753
17	replace var3 = 0.12	var4	.2155785	.0478359	4.51	0.139	3922337	.8233907
8	replace var3 = 0.13	_cons	4891011	.097675	-5.01	0.125	-1.730179	.7519773
9	replace var3 = .265		}					Ű.
20	replace var3 = .390	2						
21	generate var4 = 2.4							
22	replace var4 = 1.9 i							
23	replace var4 = 3.54							
24	replace var4 = 2.56							
	replace var4 = 3.4 i							
25	regress var1 var2 va							

Figure 4.4 Regression Analysis of Iterative QuickSort Implementation in C Using Stata

.

Using SPSS

*Output1 [Document1] - IBM SPSS S File Edit View Data Transfor	olineus			alyze Direct	<u>M</u> arketing <u>G</u> r	aphs <u>U</u> tilities /	Add- <u>o</u> ns <u>W</u>	indow <u>H</u> el	p		w								• • • <mark>• *</mark>
🖹 H 🖨 📐 🤌			r a					PB			4	•	ŧ	-	B		-	(
itput Log		a, All n b. Dep	equested va endent Varia	riables entere able: VAR0001	id. D1														
Regression																			
Title	1					Model S	ummary						3						
- 📳 Active Dataset				2	an one e			1	Change St	atistics	3								
Variables Entered/Removed Model Summary		Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Chang	ge df1		df2	Sig. F C	hange						
ANOVA	ĺ	1	.999a	.998	.990	.0468251582	.99	8 134.0	10	3	1		.063						
Coefficients		a. Prec	dictors: (Con	istant), VAROO	004, VAR00003	, VAR00002													
	2				ANOVA ^b	11													
	ĺ	Model		Sum of Squares		Mean Square	F	Sig.											
	ľ	2000 S.M.	Regression	,	381 3	.294	134.010	.063 ^a											
		F	Residual		002 1	.002													
			Fotal		384 4														
		a. Prec b. Dep	dictors: (Con endent Varia	istant), VAROO able: VAROOOI	004, VAR00003 01	, VAR00002													
					Coefficien	sa													
	ſ		6	Unstandard	ized Coefficient:	Standardized Coefficients													
		Model		B	Std. Error	Beta	t	Sig.											
	•	1 ((Constant)	489	.09	3	-5.007	.125											
		١	/AR00002	-1.399E-6	6 .00	.471	-2.105	.282											
			/AR00003	4.541	2 322	8 R. 1928	10000	.101											
		-	/AR00004	.216		3 .317	4.507	.139											
		a. Dep	endent Varia	able: VAR0001	01														
Dpen output document	_														IBM SPS	S Statie	tics Proce	ssor is ready	
			1				a 🚮	1 20				())							11:16 PM
🗿 🖉 🚺 🚺		9	2 🛓		XIN] <mark>0</mark> ⊻ P	3 월	V				0		2ª			1	0 🙀 🚺	7/31/2019

Package/Coefficient	βο	β ₁	β2	β ₃	ENERGY MODEL
MICROSOFT EXCEL	-0.4891	-0.0014e-03	+4.541213	+0.215578	E _{iqc} =-0.4891–0.0014e-03Ds +4.541213Et +0.215578P
R PACKAGE	-0.4891	-1.399e-06	+4.541	+0.2156	E _{iqc} =-0.4891–1.399e-06Ds +4.541Et +0.2156P
GRAPHPAD	-0.4891	-1.398E-06	+4.541	+0.2156	E _{iqc} =-0.4891–1.399e-06Ds +4.541Et +0.2156P
SPSS	-0.489	-1.399E-06	+4.541	+0.216	E _{iqc} =-0.489–1.399e-06Ds +4.541Et +0.216P
STATA	-0.4891011	-1.40E-06	+4.541212	+0.2155785	E _{iqc} =-4891011–1.40e-06Ds +4.541212Et +0.2155785P

Table 4.1: Comparison of the Output of Regression Analysis of five Statistical Packages.

Table 4.2: Comparison of the characteristics features

S/N	MICROSOFT EXCEL	R PACKAGE	SPSS	STATA				
1	User Friendly	Not user friendly	User friendly	User friendly	User friendly			
2	Cost of software package Cheap	Free	Cost of software package is high	Cost of software package is high	Free trial version. Cost of software package is high			
3	The users' interface is fair and gives a detailed result compared to others	The users' interface is poor compared to others statistical packages under observation	The users' interface is fair and gives a detailed result compared to others	The users' interface is fair and gives a detailed result compared to others	The users' interface is poor compared to others statistical packages under observation			
4.	Memory usage for its installation is very low	Memory usage for its installation is very low	Memory usage for its installation is low	Occupy much space compared to others.	Memory usage for its installation is low			
5	Knowledge of Programming not required	Knowledge of Programming is required	.Knowledge of Programming not required. Easy to understand and work with	Knowledge of Programming not required	Knowledge of Programming not required			
6	Good and recommended for all beginners	Not Good and not recommended for the beginners	Good and recommended for the beginners	Not Good and not recommended for the beginners	Not Good and not recommended for the beginners			
7	Result interpretation is easy	Result interpretation is not easy and it requires good expertise knowledge	Result interpretation is easy	Result interpretation is not easy and it requires good expertise knowledge	Result interpretation is not easy and it requires good expertise knowledge			

4. DISCUSSION OF RESULTS

The output of regression analysis using SPSS is approximated irrespective of the number of decimal places specified during data analysis. The results generated by R package and GraphPad are the same. The result from Microsoft Excel is better than R package and GraphPad and has the advantage of user friendly environment. However, with Stata, the results have an extended approximate values, making its output to be reliable for solutions that requires high accuracy.

5. CONCLUSION

Statistical packages vary greatly with respect to accuracy, speed, reliability and reported results may be dependent on the specific package and version. Therefore one of the factors to be considered while choosing the statistical software to be used for data analysis is the intended use of the result of the regression analysis. However, Stata does the work with high accuracy in good speed and with the fair users' interface.

REFERENCES

- 1. Ayodele, O. S., & Oluwade, B. (2019). A comparative Analysis of Quick, Merge and Insertion Sort Algorithms using three programming Languages I: Execution Time. African Journal of Mgt Information System , 1-18.
- Cavaliere, R. (2015). How to choose the right statistical software?—a method increasing the post-purchase satisfaction. how to choose the right statistical software?- a method increasing the post- purchase satisfaction , 585-598.
- 3. Michael Lewis-Beck, E. P. (2004). The SAGE Encyclopedia of Social Science Research Methods, Volume 1. Seattle, Washington: Amazon.com.
- 4. https://en.wikipedia.org/wiki/Stata
- 5. Godsey (2019). https://towardsdatascience.com/how-to-choose-statistical-software-tools, Accessed on July 1st, 2019.