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ABSTRACT 
 
This work explores the lesser studied objective of optimizing the multiply-and-accumulates executed during 
evaluation of the network. In particular, we propose using the Residue Number System (RNS) as the internal number 
representation across all layer evaluations, allowing us to explore usage of the more power-efficient RNS multipliers 
and adders. Using results from simulation of our RNS arithmetic block implementations, we show theoretical power 
advantages of using RNS for an end-to-end evaluator. 
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1.  INTRODUCTION/BACKGROUND OF THE STUDY 
 
A network is also a collection of computers, servers, mainframes, network devices, peripherals, or other devices 
connected to one another to allow the sharing of data. An excellent example of a network is the Internet, which 
connects millions of people all over the world. A network consists of multiple devices that communicate with one 
another. It can be as small as two computers or as large as billions of devices. Networks can be broadly classified as 
using either a peer-to-peer or client/server architecture. 
 
1.1 Mobile Network 
A mobile communications system that uses a combination of radio transmission and conventional telephone and data 
switching to permit communication to and from mobile users within a specified area. Note: In cellular mobile systems, 
large geographical areas are segmented into many smaller areas, i.e., cells, each of which has its own radio 
transmitters and receivers and a single controller interconnected with the public switched telephone network. The 
most commonly used radio systems are GSM (Global System for Mobile Communication) and CDMA (Code Division 
Multiple Access). As of September 2017, Verizon, Sprint, and US Cellular use CDMA. AT&T, T-Mobile, and most 
other providers around the world use GSM, making it the most widely used mobile network technology. LTE (Long-
Term Evolution) is based on GSM and offers greater network capacity and speed. 
 
Communications refers to the use of signals to transfer voice, data, image, and/or video information between 
locations, Nigeria has Africa’s largest mobile market, with about 142 million subscribers and a penetration rate of 
101%. The initial rapid growth in the number of subscribers had led to problems with network congestion and quality 
of service, prompting the regulator to impose fines and sanctions on network operators. These operators have 
responded by investing billions of dollars in base stations and fibre transmission infrastructure to support the 
increasing demand for data. Although GSM technology still dominates there is a growing shift to services based on 
LTE. Significant effort has been made to reduce the memory footprint of networks, motivated by the fact that many 
off-chip memory accesses can dominate energy consumption during evaluation (Zhou et al., 2016; Han et al., 2015). 
This paper explores the lesser studied objective of optimizing the multiply-and-accumulates executed during 
evaluation of the network. In particular, we propose using the Residue Number System (RNS) as the internal number 
representation across all layer evaluations, allowing us to explore usage of the more power-efficient RNS multipliers 
and adders.  
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We motivate our optimization with Table 1, which summarizes the large number of multiply-and-accumulates (MACs) 
required during evaluation of popular networks. Small improvements to the underlying efficiency of the core multiply 
and accumulate block can have large improvements to the overall network evaluation. 
 
Table 1. Computation Accounting for Popular Mobile Networks 

NET MACs (10
6
) PARAMS (10

6
) 

ETISALAT 
AIRTEL Nigeria 
GLO Mobile Nigeria 
MTN Nigeria 
 

720 
1550 
1700 

15300 

60 
6.8 

1.25 
138 

 
Prior work applying RNS for efficient computation has largely focused on cryptographic applications and general 
purpose ALUs. In the machine learning domain, various optimizations such as Winograd and FFT transforms have 
been proposed to speed up network inference. As far as we are aware, this is the first attempt at applying RNS to 
mobile network inference. 
 
1.2. Network Inference 
The purpose is to explain how to estimate a regulatory network from calls database. This issue is called network 
inference. We will restrict ourselves to the very simple case where a large set of calls have been measured on a few 
number of individuals. The data set is represented by the matrix X: 
 
 

 

 
Figure 1: Showing network inference 

   
Even restricting to a small subset of calls database, having n < p is the standard situation. From these data, we want 
to build a network where: 

� the nodes represent the p calls ; 
� the edges represent a “direct” and “significant” co-expression between two calls. This kind of relations aims 

at tracking transcription relations. 
 

The main advantage of using networks over raw data is that such a model focuses on “significant” links and is thus 
more robust. Also, inference can be combined or compared with or to bibliographic networks to incorporate prior 
knowledge into the model but, unlike bibliographic networks, networks inferred from one of the model presented 
below can handle even unknown (i.e., not annotated) calls into the analysis. 
 
1.3 Basics About Network Inference 
Even if alternative approaches exist, a common way to infer a network from call database is to use the steps 
described in Figure 2: 

1. The user calculates pairwise similarities (e.g., correlations in the simplest case) between pairs of calls ; 
2. The smallest (or less significant) similarities are thresholded (using a simple threshold chosen by a given 

heuristic or a test or other more sophisticated methods) ; 
3. Last, the network is built from the remaining similarities. 

 

 
Figure 2: Main steps in network inference 
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1.4 Residue Number System 
The Residue Number System (RNS) is an unconventional or unweighted number system that is defined in terms of 
relatively prime moduli set {m1, m2, …, mn} that is gcd (mi, mj) = 1 for I ≠ j. A weighted number X can be represented 
X = (x1, x2, …, xn) where xi = X mod mi = |X|mi  , 0 ≤ xi ≤ mi  such a representation is unique for any integer X in the 
range [0, M - 1] where M is the dynamic range of the moduli set {m1, m2, …, mn}.  The residues are smaller than the 
original/weighted/converntional number and as a result, the arithmetic operations such as addition, subtraction and 
multiplication could be carried out independently and parallel between different modules. Therefore, RNS is suitable 
in an application including addition, subtraction and multiplication widely, such as RSA, digital signal processing, 
image processing, and fault tolerant. 
 
VHDL (VHSIC Hardware Description Language) is a hardware description language used in electronic design 
automation to describe digital and mixed-signal systems such as field-programmable gate arrays and integrated 
circuits. VHDL can also be used as a general purpose parallel programming language. 
 
2. BACKGROUND AND EXISTING RELATED WORKS  
 
A simple approach to infer a network from call database is to calculate pairwise correlations between calls and then 
to simply threshold the smallest ones, eventually, using a test of significance. This approach is known under the term 
relevance network [Butte and Kohane, 1999, Butte and Kohane, 2000].Let us describe the simple following situations 
displayed in Figure 3. In this model, a single call, denoted by x, strongly regulates.  
 

 
 

FIGURE 3 – Small model showing the limit of the correlation coefficient to track regulation links : when two calls  y 
and z are regulated by a common call x, the correlation coefficient between the expression of y and the expression of 

z is strong as a consequence expression between two other genes, y and z. 
 
The correlation between the expressions of x and y and the correlation between the expressions of x and z are strong 
but, as a consequence, the correlation between y and z is also strong: using the simple mathematical model.  The 
modular and distributive properties of RNS are used to achieve performance improvements especially in the 
emerging distributed and ubiquitous computing platforms such as cloud, wireless ad hoc networks, and applications 
which require tolerance against soft error. Secondly, energy efficiency becomes a key driver in the continual 
densification of Complementary Metal Oxide Semiconductor (CMOS) digital integrated circuits.  The high degree of 
computational parallelism in RNS offers new degree of freedom to optimize energy performance, particularly for very 
long word length arithmetic such as those involved in the hardware implementation of cryptographic algorithms.  
 
RNS is based on a puzzle introduced by the Chinese mathematician Sun-Tzu, which was later named as Chinese 
Remainder Theorem (CRT) (Omondi and Premkumar, 2007). Based on CRT, Harvey Garner (Garner, 1959) invented 
RNS in 1959. It has several interesting number theoretic properties and unique features that can be used to boost up 
the speed of certain electronic computations (Omondi and Premkumar, 2007). The carry-propagation chain of 
conventional binary number system was then the main bottleneck of fast arithmetic operation and became the key 
motivation driving researchers to venture into this alternative number system for which the residue arithmetic 
operation in each modulus channel is independent and carry-free. Cheney in 1961 (Cheney, 1961) used these 
features of RNS to design a digital correlator with ten times faster speed than that based on conventional binary 
number system. This correlator was the first system-level design based on RNS.  



 

 

 

 

 

228 

Proceedings of the iSTEAMS Multidisciplinary Cross-Border Conference 

University of Ghana, Legon, Accra, Ghana - October, 2018
 

A year later, Guffin designed a special-purpose digital computer for solving simultaneous equations using RNS with a 
great speed advantage (Guffin, 1962). To broaden its applications, researchers are motivated to solve the difficult 
RNS operations in order to achieve overall performance improvement for general digital computing systems (Merrill, 
1964). Therefore, division, overflow detection, sign-detection and magnitude comparison have also come into the 
limelight of RNS research since 1962 (Szabo, 1962; Keir, Cheney and Tannenbaum, 1962). Meantime, further 
improvements of the essential RNS arithmetic units, such as modulo adder, multiplier, forward converter and reverse 
converter (Sasaki, 1967; Banerji and Brzozowski, 1972) remain a hot pursuit. 
 
3. PROPOSED SYSTEM 
 
The proposed methodology for this study consists of four (4) main steps; Moduli set selection, Computational cost, 
Thread architecture implementation and Adoption of CRT and without CRT. The Chinese Remainder Theorem (CRT) 
is a technique to reduce modular calculations with large moduli to similar calculations for each of the (mutually co-
prime) factors of the modulus. The first description of the CRT is by the Chinese mathematician Sun Zhu in the third 
century AD. The CRT makes it possible to reduce modular calculations with large moduli to similar calculations for 
each of the factors of the modulus. At the end, the outcomes of the subcalculations need to be pasted together to 
obtain the final answer. The big advantage is immediate: almost all these calculations involve much smaller numbers 
(Henk and Jajodia, 2011). 
 
In this research work, we _x our moduli to the structured 4-tuple {2

n
 ± 1, 2

n+1 
± 1}. This set can represent numbers in 

range [0;M = ((2
2n

 - 1)(2
2n+2 

 -1))/ 3] (Sousa, 2007). We choose the n = 7 moduli set in this work. Every RNS number 
is stored using 7 + 8 + 8 + 9 = 32 bits, and can fall in the range [0, ((2

14
 - 1)(2

16
 - 1))/3 = 357886635]. This is the 

representational range of a 28-bit unsigned integer.  Conversion in and out of RNS is based on CRT Theorems I, II, 
and III. Unfortunately, with the requisite divisions and iterative algorithms, conversion requires significant arithmetic 
overhead, as discussed by (Hiasat, 2003). Chinese Remainder Theorem (CRT): translates a residue represented 
number into its equivalent weighted number. An RNS number can be converted into weighted number X as follows: 
                                                               

 
Such that      
 

M = mi  i.e m1*m2*m3* …*mn              
bi =,  Mi = M/mi (the product of all the Moduli except for mi) and 

bi’= Mi 
-1

 = the multiplicative inverse of Mi w.r.t. m 
is the unique solution --------------------------------------------------------------------------------------eq. I 

 
 
NEW CRT1: is a method of converting from Residue Number System to conventional number system 

X = x1 + m1 |k1 (x2-x1)+k2m2(x3-x2)+ …+knm2m3…mn-1(xn-xn-1)|m2m3 … mn ------------eq. II 
Such that                   
K1 = |m1

-1
|m2m3 …mn,        K2 = |(m1m2)

-1
|m3m4 … mn,      …  Kn = |(m1m2 … mn-1)|mn 
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NEW CRT2 Definition: It is one of the cheapest converter and allows fast performance of processor. Given moduli set 
[m1/m2/m3/m4] with Residue digits (x1, x2, x3, x4)= n where n = j+k. 
X1,2 = x1 + m1 |k1(x2-x1)|m2 for k1 = |m1

-1
|m2 

X3,4 = x3 + m3 |k2(x4-x3)|m4 for k2 = |m3
-1

|m4 

X = X12 + Mj|(X34-X12)|Mk --------------------------------------------------------------------------------------------eq. III 
 
At its core, to construct complete end-to-end inference in RNS we need to support two operations: multiply- 
and-accumulate and ReLU. The choice of moduli allow us to build on prior work for both: (Zimmermann, 1999) 
proposes digital architecture for multiplication and addition mod 2n ± 1, and (Sousa, 2007) demonstrates comparison 
of RNS numbers mod 2n ± 1 in VHDL. We use a comparison module to implement the ReLU nonlinearity.  
 
We assume a discrete output for our network { e.g. 10-output image-recognition with CIFAR-10. This allows us to 
avoid the overhead of conversion out of RNS at the end of the network; instead, with our comparator, we compute a 
max over final layer softmax values, returning the index with the maximum value. All RNS operations occur in the 
realm of positive integers with fixed. 
 
3.1 Comparison in RNS 
Though RNS multiplication and addition are operationally intuitive, comparing two RNS numbers is non-trivial. We 
follow the procedure given by (Sousa, 2007). The crux of the algorithm is reducing comparison to parity (even/odd) 
checking. To compare two unsigned integers A;B mod M, we compute the difference C = A - B which becomes one of 
two values: 

 
Because with our chosen moduli M is odd, these two values have different parities. As such, we can compute a 
comparison given a formula for the mod 2 parity XP of an RNS number X = (x1; x1*; x2; x2*). Parity is calculated with 
the following set of equations: 
 

 
 
Proof is provided by (Sousa, 2007). This is the full-comparator we implement in combinational logic to execute the 
final layer maximum. In the ReLU, we are able to trim this combinational logic, because we compare with a fixed 
threshold M/2 (0 in our modulus world). We call this trimmed comparator a half- comparator. In particular, the parity of 
B = M/2 is fixed and pre-computed, as well as the value of the additive inverse -B = -M/2 we feed into the modulo 
adder. 
 
The parity-checking combinational logic implemented in Verilog is given by Figure 4. This is used in both the full and 
half comparator design. We modify the circuit given in (Sousa, 2007), which we suspect, from our testing, does not 
evaluate correctly in an exhaustive sweep of all approximately 18 million inputs. 
 
We use various optimizations. For example, the choice of modulus allows for use of an inverter to find the additive 
inverse. It also allows for calculating the remainder with a 16 bit number as a single addition (bottom-right). 
Additionally, we implement multiplication with 2

n
 mod 2

n+1 
 - 1 as a right rotate. 
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Figure 4. Combinational logic for calculating the parity of an RNS number (x1, x1*, x2, x2*) 
 
4.  ADDITION AND MULTIPLICATION IN RNS 
To fully exploit the advantages of transforming the mobile network to the RNS system, efficient modulo arithmetic 
circuits will be designed using the same moduli set as the comparison, namely (2

n1
 ± 1, 2

n2
 ± 1)    

 
4.1 Modulo Addition 
In RNS arithmetic has the advantage that each residue operates separately in parallel without any carry propagation 
from one residue to the other. Our conjugate moduli set requires modulo (2n - 1) addition or multiplication as well as 
(2n + 1). 
 
First, the modulo (2n - 1) addition can be expressed as conventional n-bit addition if the sum is less than 
the modulus, while a correction is added if the sum oveflows the modulus as follows: 
 

 
 
Since, the output carry (cout) of an n-bit adder can be used to detect the overflow condition which determines whether 
to increment the sum or not, then such carry can be fed back into the adder as proposed by (Zimmermann, 1999) for 
(2

n
 - 1) addition. 

 
 
 

 
 
where diminished-1 numbers can be used for the inputs, or a correction circuit is added to the output to account for 
the extra '1'. 
 
Since the addition in both moduli depends on the output carry, then fast parallel prefix adders are the most suitable 
implementation for the modulo adders. Figure 5 shows the a modulo parallel prefix adder where the inputs are 
preprocessed into carry generate and propagate signals then a tree of fixed operation propagates the carry in only 3 
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levels. Each solid circle represents a dot operation which combines the group carry generate and propagate bits. 
Finally, a modulo end-around carry correction is required to feedback back the output carry (cout) or its complement 
(cout’) according to the designated modulus. 
 
 

 
 

Figure 5: Parallel prefix adder for mod 2
7
 – 1 addition 

 
 
4.2 Modulo Multiplication 
N-bit binary multiplication relies on generating N partial products and accumulating them all to produce the final 
product. Modulo multiplication relies on the same concept as well as the periodicity of the binary weights which 
causes the higher order partial products to rotate folding back into n-bit weights. Therefore, the partial products can 
be generated, similar to in (Zimmermann, 1999), as 
 

 
 
where the << operator represents a circular shift. Similarly, an expression for the partial products of the (2

n
 + 1) 

modulus can be derived to be 
 

 
 
Such multipliers can be designed in a modular way where a block generates the required partial products according 
to the selected modulus. Then, a modulo carry save adder tree shown in Figure 6 generates a redundant sum output 
(PC; PS) which is then added using a modulo adder to produce the final product. 
 

 
Figure 6:  Mod 2

n
 – 1 multiplier architecture showing the module carry save adder 

 
 
5. RESULT AND DISCUSSION 
 
5.1. RNS Power Consumption 
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We built several building blocks for RNS-based network inference using Bluespec SystemVerilog and synthesized 
them using a commercial LP65nm CMOS process. Table 2 shows the power and frequency of operation of the RNS 
blocks as well as their 32-bit counter-parts. It is worth noting that the multiplier consumes almost half the power of the 
32-bit block with a positive slack allowing for higher frequency of operation. 
 

 
 
5.2. Maintaining a Modulus Integer Network 
A limitation using RNS is the necessity to maintain positive integer weights and activations within a given 
modulus M. To demonstrate the feasibility of this, and obtain a rough estimate of accuracy degradation when 
imposing such constraints, we train different flavors of a 8-layer (7 CN/1 FC) network on the Street- View House 
Numbers (SVHN) dataset (Netzer et al., 2011). We denote a (W, A)-FP/INT network as a network with W-bit weights 
and A-bit activations in either floating point or integer, respectively. Note that negative integers are interpreted as their 
respective positive value in a wrap-around modulus. 
 
We first trained (32, 32)-FP. We used a set of shadow floating point weights, initialized to (32, 32)-FP, and truncate 
these shadow weights in the forward pass to generate our (6, 6)-FP network (gradients get passed to the shadow 
weights). In our (32, 32)-INT and (6,6)- INT networks, we modify this truncation operation to be a suitable affine 
transformation to fit our bit width and desired range. Note that our activation function in the integer network changes 
to compare with M/2. Networks were trained for 15 epochs, with data augmentation, 50% last layer dropout, and 
selecting the best model-checkpoint with highest validation accuracy. Note that a 6-bit integer is able to fit within each 
modulus of our RNS representation. As expected, reducing bitwidth increases error. Moving to integer networks 
appears to slightly decrease accuracy. The precise reason for this is unclear; perhaps, something wonky is occurring 
with the gradient updates and gradient magnitude. Networks were implemented in Tensorow or Tensorpack. 

 
 
 
5.3. Estimation of the RNS Break-Even Point 
Use of RNS incurs overhead proportional to the output size, because of the comparatively expensive ReLU-RNS 
modules. If we have a Y * X fully-connected layer, we can compare the relative energy costs associated with 
performing the corresponding MACs and ReLU in RNS or non-RNS:  
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This hints that it could be possible to achieve energy savings through RNS on FC layers of any size, because of our 
ReLU overhead/MAC savings ratio. It is demonstrable that the same result applies for a CN layer, in which we would 
replace X with CinKXKY , the size of channel-output filter. Note that this estimation is ignoring costs of memory 
accesses. Though, because of our choice of moduli, the amount of data being shuffied is similar in both systems. 
 
6. CONCLUSION 
 
In this research work, we outlined use of the Residue Number System to perform inference on mobile networks. 
Using our single-block implementation power estimates, we showed theoretical analysis of the advantages of RNS for 
an end-to-end system. In addition, this research, which will provide the following expected contributions amongst 
others: 
 
1. The speed of the communication channel will tremendously be increased due to the carry-free property of RNS.  
2. Congestion in the communication channel will be reduced as partial representation of actual data will be 
transmitted, therefore reducing the data traffic in the communication channel.  
3. This will increase the general throughput of the communication system.  
4. There will be a reduction in energy and memory consumption.  
5. Generally the quality of service is expected to improve.  
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