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ABSTRACTABSTRACTABSTRACTABSTRACT    
    
Abstract— One of the current trends in the technology of small devices manufacturing is the reduction size 
of computer systems. By reducing the device overall size, it is possible to fit more inside a microprocessor. 
This will increase the computational power of the microprocessor. The rate of progress made so far shows 
that this trend cannot continue forever, as it may lead to sizing the entire microprocessor into a size smaller 
than an atom. Quantum devices design is one of the possible promises to get around improved 
performance, small size, and energy efficient small devices. In this paper, the idea of size miniaturization is 
addressed using quantum or Control-NOT (CNOT)–based technology, as an emerging research efforts. 
The idea is to develop a single-gate circuitry to transform the conventional AND–OR–NOT–based circuits 
to CNOT-only or all-CNOT circuits. Some of the major benefits of the all–CNOT circuits include low cost 
of small devices design/production, circuit miniaturization, reduced power consumption, and speedup in 
performance as a result of reduction in propagation delay. In this paper, we define a set of local 
transformation rules that is applicable to the design of classical circuits and based on these local 
transformations, we derive the equivalent for quantum circuits. 
 
KeywordsKeywordsKeywordsKeywords: Design, Construction, Gurglar, Alarm, Security, Opto-Isolator & Infrared-Beam. 
 

  This work is licensed under TTTThe Creative Commons Attribution 4.0he Creative Commons Attribution 4.0he Creative Commons Attribution 4.0he Creative Commons Attribution 4.0 License.  
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons 

P.O.Box 1866, Mountain View, CA 94042, USA. 

    
    
1.  1.  1.  1.  INTRODUCTION INTRODUCTION INTRODUCTION INTRODUCTION     
 
In recent years, there have been continuous increase in the volume of computation carried out using the 
digital computers. Also, the growth and level of precision of scientific research ranging from complex 
mathematical factorization problem to analysis in genetic engineering have aggravated the high speed and 
mini sizes of classical computers to rapidly hitting their limits [1]. Classical computers are designed using 
conventional AND-OR-NOT-based circuits.  
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But, as new technological innovations continue to replace existing ones, the need to develop computing 
systems (quantum computers) that are capable of withstanding the surges in high speed and small sizes is 
imperative. These quantum systems are expected to replace the combinational or Boolean logic circuits – a 
circuit put together using any or a combination of AND-OR-NOT-based elements [2]. 
 
DeMorgan’s theorem is one scheme that converts heterogeneous circuits into the corresponding 
homogenous circuits. The resultant circuit is smaller in size and cost less to develop. However, the circuit is 
does not have the advantages of quantum computer system. 
 
The main purpose of this term project is to introduce the logic synthesis for Quantum Boolean Circuits 
(QBC). The key difference [2] between the conventional and quantum circuits [16] is noticed in the base 
family of the logic gates. For the QBC, the design is based on the use of a C-NOT type of gates as the sole 
elements. A second difference is that the QBC design is based on only straight-line parallel wiring. A 
controlled-NOT gate is meant to be a reversible operation which, for ordered pairs of bits  
performs the operation  where conventionally the control is represented by the first 
bit and the target by the second. Reversible operations such as CNOT [12] can be lifted to distributions 
over inputs by describing it as a permutation of computational basis states. In particular, since it can be 
mapped that: 
 

 

 

 

 
 
the permutation matrix which we use to represent CNOT is 
 
  

 
 
It is easy to verify that this (and all other permutation matrices) are unitary. This is the operation which 
transforms the state of the first two qubits. The state of the two qubits [8]just before the CNOTCNOT gate 
is given by: 
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Applying the action of the CNOT, the following can be obtained: 
 

 

 
 
In this case, it is clear that the CNOT can be applied on the standard basis states |0⟩|0⟩ and |1⟩|0⟩. This is 
made possible because of the linearity property of the CNOT operation. 
 
In this project paper, a practical method is developed for quantum circuits. The developed quantum 
scheme is obtained using local transformation of Boolean logic circuits. The final quantum circuit makes 
the most efficient operation sequence for implementing logic functions in quantum computation. In this 
paper, a practical method is developed for quantum circuits. The developed quantum scheme is obtained 
using local transformation of Boolean logic circuits. The final quantum circuit makes the most efficient 
operation sequence for implementing logic functions in quantum computation. The novelty of this paper is 
the application of the existing set of available quantum transformations to actualize performance-intensive 
design for small devices. The overall objective is to achieve cost-reduction and power-efficient design.  
 
The remaining parts of the article organized as follows. Section 2 reviews relevant literature. Supportive 
definitions for quantum mechanics is provided in Section 3. The relationship between Quantum 
Computing and Boolean operations that drives combinatorial circuits is provided in Section 4. A practical 
approach as a proof of concept and to show that the concept is realization is given in Section 5. Section 6 
concludes the paper. 
 
2. 2. 2. 2. RELATED WORKRELATED WORKRELATED WORKRELATED WORKSSSS    
 
A new methodology for logic synthesis for Quantum Boolean Circuits (QBC) is introduced in this paper. 
The key difference [2] between the conventional and quantum circuits is noticed in the base family of the 
logic gates. For the QBC, the design is based on the use of a C-NOT type of gates as the sole elements. A 
second difference is that the QBC design is based on only straight-line parallel wiring. Some schemes that 
are used for the evaluation of Boolean (algebraic) expression include algebraic methods [17], Karnaugh 
map [15], and Quine-McCluskey [14]. These two schemes have drawbacks in that they are intuitive and not 
programmable. However, Quine-McCluskey [14] is capable of automation but the overhead in terms of 
design is high. These schemes lack adequate support as a tool for the design of quantum circuits.  
 
To discuss the design a small QBC, the quantum algorithm can be divided into two parts -- the quantum 
specific part, for example, Hadamard transformation for making a quantum superposition and the 
Quantum Fourier transformation [6]. The second design applies the quantum Boolean oracles [5], to 
obtain (conventional) Boolean functions. The purpose of this report is to use the rule set for the 
development of a design theory for quantum circuit whose Boolean logical part is implemented using the 
Control-NOT (C-NOT) circuit with a view to reducing the overall cost of design. The required operations 
needed to perform a quantum algorithm, required unitary operations should be expressed as a sequence of 
the basic operations, which can be implemented by a quantum computer.  
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It is proved that the combination of one-qubit operations and controlled-NOT (C-NOT) operations can 
make any unitary operations [1], and the implementation of these basic operations is the least requirement 
for a quantum system to be a quantum computer. Several methods have been suggested to get an operation 
sequence, or a quantum circuit, consisting of the basic quantum gates for a given unitary operation [1] and 
[4]. These methods are general, but they do not necessarily generate the most efficient operation sequence 
from the point of view of experimental implementation.  
 
The evaluation of a binary or logic function, which is the very basic task in classical computation, is also 
frequently required in the quantum algorithms such as search and Deutsch algorithms [5] and [6]. One of 
the results of studies on quantum computation is that a quantum computer can calculate any function, 
which can be calculated by a classical computer [7]. Therefore, it is expected that a function can be 
evaluated in a quantum computer through a quantum combinational logic circuit corresponds to a classical 
combinational logic circuit. A quantum combinational logic circuit can be constructed with basic quantum 
logic gates such as quantum NOT, called C-NOT and Toffoli gates [13] as a classical combinational logic 
circuit is constructed with NOT, AND, and OR gates. An efficient method of making a well-designed 
quantum circuit for a logic function will be very useful because the successful implementation of a quantum 
algorithm depends heavily on the number of basic gates composing the quantum circuit due to the finite 
coherence time. 
 
3.3.3.3.    QUANTUM COMPUTING QUANTUM COMPUTING QUANTUM COMPUTING QUANTUM COMPUTING ––––    DEFINITIONSDEFINITIONSDEFINITIONSDEFINITIONS    
 
The following basic definitions provided in [16] forms the basis of transformation rules that is applied to the 
local transformation rules for CNOT gates. In addition to these definitions, some commentaries relating to 
their applicability to quantum circuit design is given. 
 
a) Definition 1. A Control-NOT gate is denoted by [t, C], where t is an integer and C is a finite set of 

integers. This definition for CNOT is constrained by the condition that  is called the target 
bit and is called the control bit provided that  

condition is satisfied. Using this definition to analyze the Quantum Basic Circuits (QBC) in 
Figure 1, the leftmost CNOT [n+1, {1, 2, n}] this is identical to [t, C]. The effect of this CNOT gate is 

that it changes the |xn+1〉 into |xn+1⊕f(x1 . . . xn)〉 state. 
 

b) Definition 2. A QBC of size M-over qubits [8] |x1. . .xN〉 is a sequence of CNOT gate. This definition 
provides a basis for comparison of quantum and conventional circuit model. For any given sequence of 
CNOT gates, [t1,C1],[t2,C2]…[ti, Ci],…,[tM, CM] where 

 
 

c) Definition 3. The state of the circuit after i-th CNOT 
gate [ti, Ci] is denoted by . 
 

d) Definition 4. A QBC is said to be proper and to compute a Boolean function f(x1, x2, . . . , xn)  iff.  
. This means that all the auxiliary bits are cleared at the beginning of 

computation.  
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4.4.4.4.    QUANTUM BOOLEAN CIRCUITSQUANTUM BOOLEAN CIRCUITSQUANTUM BOOLEAN CIRCUITSQUANTUM BOOLEAN CIRCUITS    
 

Quantum computation engages a quantum bit, or qubit that plays a very significant role in the analysis and 
design of quantum circuits. [10] proposes a physical realization of these qubits and is given by 

 where  means the quantum state of the qubit x, and α and β are complex quantities 
that satisfy and the measured quantum state gives and  with probabilities  and  
respectively. Thus, the qubit can be in a superposition of the states and . This is a major distinguishing 
factor of the quantum circuits from the conventional circuits. In quantum computing, unitary operator is 
applied to the qubits to obtain the final quantum state. The unitary operations applied to these quantum 
states constitute a Quantum Boolean Circuit (QBC). Consider the QBC as a quantum system with N qubits 
given by . 
 
The resultant combinational logic circuits obtained have heterogeneous characteristics (since the complete 
circuit is built from different logic gates). Heterogeneous circuits are difficult to trouble shoot have high-
energy demand. Also, the propagation delay is high and hence, the speed of such circuits is slow. Above all, 
since the heterogeneous circuits are composed of different gates, the cost (in terms of number of 
components) of production is high and computer systems developments based on this type of technology 
do not compete favorably with those developed from homogenous circuits. Both the heterogeneous and 
homogeneous classical circuits [3], [4], and [5] have the following basic characteristics: 

 
i. Classical circuit behavior is governed implicitly by classical physics. 
ii. Signal states are simple bit vectors, e.g., 

 
iii. Boolean algebra defines operations – 

 where  is implemented using the NOT gate. 
iv. Small well-defined sets of universal gate types, e.g., AND, OR, NOT or their corresponding 

complements such as NAND, NOR, EXOR, COINCIDENCE. 
v. Circuits are easily implemented in fast, scalable and macroscopic technologies such as 

Complementary Metal Oxide Semi-conductor (CMOS). 
 

On the other hand, quantum logical circuits are associated with the following characteristics [6]: 
 

i. Signal states are vectors interpreted as a superposition of binary “qubit” vectors with complex-number 
coefficients such that: 

 
 

 
 

ii. Operations are defined by linear algebra over Hilbert Space and can be represented by unitary 
matrices with complex elements. 

iii. Many universal gate sets exist but the best types are not obvious. 
iv. Circuits use microscopic technologies that are slow and fragile. 
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DeMorgan’s theorem [17] is one scheme that converts heterogeneous circuits into the corresponding 
homogenous circuits. The resultant circuit is smaller in size and cost less to develop. However, the circuit is 
does not have the advantages of quantum computer system. 
 
4.1 4.1 4.1 4.1 Quantum Boolean CircuitsQuantum Boolean CircuitsQuantum Boolean CircuitsQuantum Boolean Circuits    

 
In quantum computing, a quantum bit, or qubit, plays a very significant role in the analysis and design of 
quantum circuits. [10] proposes a physical realization of these qubits and is given by , 

where |  means the quantum state of the qubit x, and α and β are complex quantities that satisfy 
 and the measured quantum state gives  and  with probabilities  and  

respectively. Thus, the qubit can be in a superposition of the states  and . This is a major distinguishing 
factor of the quantum circuits from the conventional circuits. In quantum computing, unitary operator is 
applied to the qubits to obtain the final quantum state. The unitary operations applied to these quantum 
states constitute a Quantum Boolean Circuit (QBC). Iwama et al. [2] define QBC as a quantum system with 
N qubits given by . 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: QuaFigure 1: QuaFigure 1: QuaFigure 1: Quantum Boolean Circuit.ntum Boolean Circuit.ntum Boolean Circuit.ntum Boolean Circuit.    
 

Figure 1 shows the structure of a QBC where  are the inputs and the (n+1)-st qubit |xn+1〉 is 
the work bit of the QBC. The work bit takes the form of .  This form is used to obtain 
the Boolean function f. During quantum circuit design, the auxiliary bits have a high being entangled, to 

circumvent the entanglement condition, all the auxiliary qubits are set and reset to |0〉.   
 
4444.2 .2 .2 .2 Local Local Local Local Transformation RulesTransformation RulesTransformation RulesTransformation Rules    
Given any two classes of circuits - combinational or classical circuits (SC) derived from a Boolean 
expression and quantum circuits (SQ), We want to show that a certain relation exits that transforms SC to 
SQ. Where the circuits obtained from SQ are a minimized form of SC. Iwama et al. [2] give the following 
local transformation rules. 
 
The basic idea that governs local rule transformation from circuit 1 (C1) to circuit 2 (C2) is based on the 

condition that if C1 and C2 are equivalent, then C1 ⇔ C2 follows a simple transformation since C1 ⇔S1 = 

S2 ⇔ C2. 
 

|x1〉〉〉〉 

 

 

|x2〉〉〉〉 

 

 

 

 

|x1〉〉〉〉 

 

|x2〉〉〉〉 

 

CNOT Gate 

 

|xn〉〉〉〉 

 

Aux 
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Rule 1: Iwama et al. [2] gave that any two adjacent logic gates will cancel out. i.e., [ti, Ci]. [ti, Ci] ⇔ ε. 
Where i is identical for any transformation. This rule can be diagramed in a logical sense as shown in Figure 
2.  
 

 
Figure 2: Diagrammatic RepresentaFigure 2: Diagrammatic RepresentaFigure 2: Diagrammatic RepresentaFigure 2: Diagrammatic Representation of Rule 1.tion of Rule 1.tion of Rule 1.tion of Rule 1.    

 
Logically, aabab= d. The circuit on is transformed to the one on the right by the application of Rule 1. 
The fundamental concerns of circuit miniaturization are achieved (reduced size and power consumption).  
 
Rule 2: The application of Rule 2 follows the commutative principle in linear algebra with a constraint that 

and . It however guarantees that the circuit or the left-hand side and that on the right-hand 
side are equivalent. According to Iwama et al. [2] the placement of basic elemental components in a circuit 
follows a commutative approach. 

 

 
Figure 3: Diagrammatic Representation of Rule 2.Figure 3: Diagrammatic Representation of Rule 2.Figure 3: Diagrammatic Representation of Rule 2.Figure 3: Diagrammatic Representation of Rule 2.    

 
Rule 3: Iwama et al. [2] gave Rule 3 as follows: 

if and , then [t1,C1].[t2,C2] ⇔ [t2,C2].[t1,C1]. [t1,C1  C2-{t2}]. The logical circuit that illustrates 
this rule is given in Figure 3. 

 

 
Figure 4: Diagrammatic Representation of Rule 3.Figure 4: Diagrammatic Representation of Rule 3.Figure 4: Diagrammatic Representation of Rule 3.Figure 4: Diagrammatic Representation of Rule 3.    

 

|a

〉 

 

|b

〉 

|a〉〉〉〉 

 

|b〉〉〉〉 

 

|a

〉 

 

|b
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Rule 4: Iwama et al. [2] gave Rule 4 as follows: 

[t1,C1].[t2,C2] ⇔ [t2,C1 C2-{t1}].[t2,C2]. [t1,C1] if  and . This rule is the dual of Rule 3. It 
provides a relationship between two gates that are opposite. The logical circuit that illustrates this rule is 
given in Figure 4. 

 
 

 
Figure 5: Diagrammatic Representation of Rule 4.Figure 5: Diagrammatic Representation of Rule 4.Figure 5: Diagrammatic Representation of Rule 4.Figure 5: Diagrammatic Representation of Rule 4.    

 
Rule 5: Iwama et al. [2] gave Rule 5 as follows: 

[t1,C1].[t2,C2] ⇔ [t1,{C1}]. [t2,C2  C2-{t1}]. 
Rule 5 follows a condition that t1 must be greater than n+1 and that there is no CNOTt1 before [t1, {C1}]. 
The logical circuit given in Figure 6 explains Rule 5. 

 

Figure 6: Diagrammatic Representation of Rule 5.Figure 6: Diagrammatic Representation of Rule 5.Figure 6: Diagrammatic Representation of Rule 5.Figure 6: Diagrammatic Representation of Rule 5.    
 

In Figure 6, |0〉 is called auxiliary qubit and initialized to |0〉. The output is given as: 
0dd 
 
Rule 6: Iwama et al. [2] expression of Rule 6 shows that whenever there is an integer t such that there is no 

CNOTi before [t,C] then the circuit does not really exist. According to Iwama et al. [2], [t,C] ⇔ ε. 
 
 
 
 
 
 
 
 

|a〉 

 

|b〉 

 

|a

〉 

 

|b
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5. 5. 5. 5. PRACTICAL APPROACHPRACTICAL APPROACHPRACTICAL APPROACHPRACTICAL APPROACH    
 
To model a quantum circuit from a corresponding Boolean logic circuit (classical circuit), consider 
Equation (2), a Karnaugh Map (K-map) method for minimizing Boolean expression.  
Given that: 

 
 
where d is a case for “don’t care”. A don’t care condition [8] is analogous to the use of a catalyst to aid 
chemical reaction. They only help in circuit minimization through a combinational approach. A 
combinational logic operation is basically the operation performed by a combinational logic circuit that 
accepts one or more inputs and produces only one output as in . 
 
It is required to obtain a Boolean circuit and transform it to its equivalent quantum circuit. For this 
problem, a K-map realization gives the following: 

 
      

Figure 7: KFigure 7: KFigure 7: KFigure 7: K----Map realization of Map realization of Map realization of Map realization of     
 
From Figure 7, the minimized Boolean expression corresponding to   

is given by acb + . This Boolean expression can be realized using an AND-OR implementation as follows. 
 

AND        OR 
 
 
 
 
 
 
 
 

Figure 8Figure 8Figure 8Figure 8: Minimized : Minimized : Minimized : Minimized Logic Circuit realization for f(a,b,c).Logic Circuit realization for f(a,b,c).Logic Circuit realization for f(a,b,c).Logic Circuit realization for f(a,b,c).    
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The equivalent quantum circuit in Figure 8 corresponds to the minimized classical logic circuit in Figure 9. 
 

Figure 9Figure 9Figure 9Figure 9: Equivalent Quantum Circuit.: Equivalent Quantum Circuit.: Equivalent Quantum Circuit.: Equivalent Quantum Circuit.    
 

Circuit Analysis: From the circuit of Figure 9, we observe that its comprised of two different logic gates – 

AND and OR. These two logic elements have different propagation delay (ιD) – the time required by an 
operation to get to completion. Since these logic elements are put in cascade, a possibility exists that their 

respective ιD add up and makes the performance too slow. To circumvent the effects of this delay property, 
a quantum circuit (Figure 9) is obtained from the minimized logic circuit. The quantum circuit is comprised 
of the same type of elements of all CNOT (homogeneous). This makes the circuit less cost intensive to 
build, fast responds speed and above all, occupies less space. The waveform of Figure 10 describes the 
relative speedup of the two circuits of our analysis. 

 

 
Figure 10Figure 10Figure 10Figure 10: Wave Form analysis : Wave Form analysis : Wave Form analysis : Wave Form analysis of Classical and Quantum circuits.of Classical and Quantum circuits.of Classical and Quantum circuits.of Classical and Quantum circuits.    

 

ιT = ιAND + ιOR is the sum of the delay due to AND and OR gates. In the case of the quantum circuit, ιT 
sums up like parallel addition. That is, the sum of the propagation delay is maintained low.  
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6. 6. 6. 6. CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION    
 
The circuit miniaturization process using local transformation rule obtains quantum equivalent circuits of 
the given classical circuits. Although the resultant compact sized quantum circuits consume less power, 
faster, and cost less to develop, the circuit will no doubt face other problems that will form the frontier for 
wider research area. The compact sized circuits will become too complex to diagnose and troubleshoot. 
Hence maintainability becomes non-trivial. Also, the mean time to fail (MTTF) and Mean time between 
fails (MTBF) will be high for a complex circuit. Therefore, the pros and cons of miniaturization should be 
adequately weighed before embarking on the venture. For example, it is computationally intractable to allow 
one computation to be cascaded with another, because in general, cascading two unitary transforms results 
in a new transform with unrelated eigenvalues. Future research directions will look at parallelism in this 
regard.  
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