
Journal, Advances in Mathematical & Computational Sciences
 Vol. 11 No. 2, June, 2023

www.isteams.net/mathematics-computationaljournal

45

Development of a Novel Hybrid Sorting Algorithm for
Energy Efficiency in Resource-Constrained Devices

1Ayodele, Oluwakemi Sade, 1Owoeye, Sheidu Audu Yakubu & 2Oloruntoba Leke Joseph

1Department of Computer Science, Kogi State Polytechnic, Lokoja, Kogi State, Nigeria
2Department of Computer Engineering, Kogi State Polytechnic, Itakpe, Kogi State, Nigeria

Correspondence Email: kemtemmy2009@gmail.com
Phone: +2348069804373

ABSTRACT

In recent years, technological advancement and continuous improvement in computing devices has
led to more study in the area of Green Computing with much emphasis on processing time and energy
consumption. Intensive studies have been in the area of Energy efficiency of Algorithms with much
concentration in improving the hardware. However, there has been little or no work in the area of
studying, developing or improving the algorithm itself (energy aware algorithm). The aim of this study
is to develop a novel hybrid sorting algorithm (KSU Hybrid derived from Kogi State University where the
experiment was conducted) from the quick and insertion sorting algorithms. which took advantage of
the strength of both the Quick sort and insertion sort Algorithms. An experiment was carried out to
compare the energy consumption of the Quick, merge, insertion and KSU Hybrid. The four sorting
algorithms (Quick, merge, insertion and KSU Hybrid) were implemented using three programming
languages (C, Java and Python). Time stamp was used to capture the execution time of the sorting
algorithm. Power consumed was measured using Joule meter. Use of scripting language has clear
drawbacks in terms of energy consumption which should be taken into consideration. KSU hybrid sort
is therefore better energy efficient than the Quick, Merge and insertion sort algorithms in most cases.
Therefore, this research work provides information on choice of sorting algorithm type and its algorithm
implementation style. This is done in order to minimize energy consumption of an algorithm in the
current period of explosive growth in the use of smart phones and hand-held devices which run majorly
on battery life. This gives developers knowledge on energy efficiency in software leading to choosing
some codes over others based on their energy efficiency.

Keywords: Energy Aware, Hand-Held Devices, Green Computing, Hybrid.

Ayodele, O.S., Owoeye, S.A.Y. & Oloruntoba, L.J. (2022): Development of a Novel Hybrid Sorting Algorithm for Energy Efficiency in Resource-
Constrained Devices. Journal of Advances in Mathematical & Computational Science. Vol. 10, No. 4. Pp 45-60.
dx.doi.org/10.22624/AIMS/MATHS/V11N2P5. Available online at www.isteams.net/mathematics-computationaljournal.

Journal of Advances in Mathematical & Computational Sciences
An International Pan-African Multidisciplinary Journal of the SMART Research Group

International Centre for IT & Development (ICITD) USA
© Creative Research Publishers

Available online at https://www.isteams.net/ mathematics-computationaljournal.info
CrossREF Member Listing - https://www.crossref.org/06members/50go-live.html

Journal, Advances in Mathematical & Computational Sciences
 Vol. 11 No. 2, June, 2023

www.isteams.net/mathematics-computationaljournal

46

1. INTRODUCTION

In the recent years emphasis has been on computing which focus mainly on developing energy and
power efficient devices and the use of non-toxic materials and minimizing e-waste in such design which
is more of hardware and less on the software (Christian et al, 2009). A resource-constrained device is
device that has limited processing and storage capabilities, and that often runs on batteries. Energy
efficiency is using technology that requires less energy to perform the same function. The goal of
efficient energy use is to reduce the amount of energy required to provide products and services
(Javier, 2018). Therefore, understanding energy usage/ consumption of an algorithm has become a
major issue in determining and improving the energy efficiency of any algorithm. Furthermore, many
improvements have been introduced in sorting algorithms during the last decade. To facilitate some
other operations such as searching, merging and normalization sorting is often required (Waqas,
2016). It is estimated that more than 25% of all computing time is spent on sorting the keys and some
installations spending more than 50% of their computing time in sorting files (Essays, UK.,2013).

As a matter of fact much research has been done on the topic of sorting & searching (Deepthi, 2018,
Essays, UK., 2013) but there is no single sorting technique which can be considered the best among
the rest. (Essays, UK. , 2013). Bubble sort, selection sort and exchange sort are applicable for small
input size, insertion sort for medium input size whereas quick sort, merge sort and heap sort are
applicable for an application expecting large to huge data size (Author, 2013). All of the above sorting
algorithms are comparison based algorithms and hence cannot be faster than O(nlog2n) , where O and
n have their usual meanings (Kazim, 2017; Owoeye, 2016).

For an application, a sorting algorithm is selected according to its computational complexity; ease of
implementation and most interestingly recently on its energy efficiency. There is no any single sorting
technique which may be called the best among the rest. Bubble sort, insertion sort, selection sort and
exchange sort are applicable for input data of small to medium size whereas quick sort, merge sort
and heap sort are applicable for an application expecting large to huge data size (Deepthi et al,2018).

Owoeye (2016) improved on the dual pivot Quick sort algorithm, compared the existing Quick sort with
modified based on power consumption, energy efficiency, data size and cyclomatic complexity. The
empirical study showed that data sizes have effect on power consumption. In (Essays. UK, 2013) a
new enhanced sorting algorithm was introduced which shows more efficiency than the insertion sort
and other sorting algorithms like bubble sort, quick sort and merge sort.

The technique used for the enhancement in insertion sort is application of improved binary search,
adapted from binary search, through which the location of the next element to be placed in the sorted
left sub array can be found more quickly than the conventional sequential search used to find that
location. In an insertion sort algorithm, there are always two constraints in time complexity. One is
shifting the elements and the other one is comparison of the elements. The time complexity is also
dependent on the data structure which is used while sorting. If we use array as data structure then
shifting takes O(n2) in the worst case. While using link list data structure, searching takes more time,
viz. O(n2)(Kazim, 2017;Surabhi Patel et al., 2014).

Journal, Advances in Mathematical & Computational Sciences
 Vol. 11 No. 2, June, 2023

www.isteams.net/mathematics-computationaljournal

47

Computing devices such as laptops, smartphones, tablets, or other mobile devices, energy
consumption is the top priority because they are run on battery, with limited lifespan, as their source
of power (kor, 2015). Moreso, most of the energy consumed by theses computing devices is converted
into heat, resulting in wear and reduced reliability of hardware components. Also protecting the
environment by saving energy and thus reducing carbondioxide emissions is one of today’s hottest
and most challenging topics (Deepthi, 2018, Bunse C, 2015). From a technological point of view, the
realization still falls behind expectations. Moreso, an efficient sorting technique is important to
optimize the design of other algorithms that would need sorted key items to work properly and
efficiently.

There is no any single sorting technique which may be called the best among the rest. Bubble sort,
insertion sort, selection sort and exchange sort are applicable for input data of small to medium size
whereas quick sort, merge sort and heap sort are applicable for an application expecting large to huge
data size. These sorting algorithms are comparison based and hence can not be faster than O (n log
n). There are a few algorithms claiming to run in linear time but for specialized case of input data. So,
there is an urgent need of a new sorting algorithm which may be implemented for all input data and it
may also beat the lower bound (O (n log n)) of the problem of sorting and also be energy efficient. This
work is an effort in that direction.

Insertion sort is an iterative sorting algorithm, a simple in-place sorting algorithm which is relatively
efficient for small lists and often adopted to develop sophisticated algorithms though it is highly
expensive and inefficient for solving large problems (inefficient for sorting large data). However,
previous work pointed out the inefficiency of insertion sorting algorithm in sorting large data sizes. This
portends energy challenges for resource-constrained devices. In this research, an energy efficient
insertion sort algorithm will be developed by modifying the conventional insertion sort algorithm for
computing devices. In this research, an energy efficient insertion sort algorithm will be developed by
modifying the conventional insertion sort algorithm for computing devices.

Evaluation of this algorithm will be conducted with some energy efficient sorting algorithms including
quick, merge, conventional Insertion and the modified Insertion sorting algorithms using Central
Processing Unit (CPU) power utilization, execution time and energy as performance metrics.
Proliferation of computing devices which provides quick access to information and fast decision taken
is speedily taking over all of human endeavours. Studies in the literature have demonstrated that
these computing devices have limited memory and Central processing Unit (CPU) capabilities to
process large programs (Niklas et al, 2017) which often accounts for the high time complexity incurred
by programs that run on these devices. As a result, there is a need to develop energy efficiency
algorithms to manage the complexity of large data sizes on these computing devices since energy
efficiency is an essential design criterion for them.

However, past research studies are in the area of hardware implementations which are prone to
external influences with little or nothing in the area of Application/Algorithm, they are usually treated
as black box. All experimentations from this study are therefore going to be software based. Resource-
constrained devices have become an integral part of our life and provide dozens of useful services to
their users. However, usability of mobile devices is hindered by battery lifetime.

Journal, Advances in Mathematical & Computational Sciences
 Vol. 11 No. 2, June, 2023

www.isteams.net/mathematics-computationaljournal

48

Moreso, most of the energy consumed by these systems are converted into heat, resulting in wear and
reduced reliability of hardware components. Also protecting the environment by saving energy and
thus reducing carbon dioxide emissions is one of today’s hottest and most challenging topics. From a
technological point of view, the realization still falls behind expectations. Therefore, energy
conservation and efficiency by applications that run on computing devices is still a big challenge. To
this end, developing an energy aware application that can effectively and efficiently be executed
remains an open problem. The aim of this research is to develop a novel hybrid sorting algorithm from
an improved quick and improved insertion sorting algorithms

2. LITERATURE REVIEW

A number of useful Algorithmic related energy efficient model and work have been reported in
literature. This section gives a few of such reported and related work. Deepthi et al (2018) conducted
experiments to study how different sorting algorithms have an impact on energy consumption using C
language implementation. It was discovered that both time and energy have an impact on the
efficiency of these sorting algorithms with quick sort, merge sort and shell sort found to be in the same
range of time and energy consumption, followed by insertion and selection sort which is far better than
Bubble sort. However, the implementation is only in C language with a non-varying small data size of
10,000. The effect of sorting large data sizes was not considered, varying the algorithm
implementation style was also not put into consideration and no modification of algorithm was carried
out. Energy models not developed.

Adel Noureddine (2014) presented energy models, approaches and tools that can be used to estimate
accurately the energy consumption of software at the code level and the application level. JALEN and
JALEN UNIT for estimating how much energy each portion of the codes consumes which helped to
provide energy information, draws a model of energy consumption evolution of software based on the
value of input parameters. However, this study is not RCD centered and with no application to sorting
algorithm. Rivoire et al (2007) proposed an external sorting benchmark for evaluating the energy
efficiency of sorting for a wide range of system but focused more on hardware rather than the software
domain and also not applicable to resource-constrained devices (RCD).

Bunse et al,(2009) conducted an experiment to show that different sorting algorithms have different
energy consumptions and that there is no direct correlation between time complexity of an algorithm
and its energy consumption. Owoeye (2016) improved on the dual pivot Quick sort algorithm,
compared the existing Quick sort with modified based on power consumption, energy
efficiency, data size and cyclomatic complexity. The empirical study showed that data sizes
have effect on power consumption. However, the study is not applicable to RCD and no
modification of sorting algorithm was carried out.

Journal, Advances in Mathematical & Computational Sciences
 Vol. 11 No. 2, June, 2023

www.isteams.net/mathematics-computationaljournal

49

3. METHODOLOGY

3.1 Experimental Data Acquisition

Source
The data were randomly generated by importing random function from the language(s) libraries.

Size and Format:
In the algorithm execution, five different integer elements were sorted (100,000; 200,000; 300,000;
400, 000 and 500, 000) which were randomly generated.
To reduce measurement error, each data size been considered was executed five times, the average
captured and recorded for use.

3.2 Measurement tools
Joulemeter:
Joulemeter is a modeling tool that over the years have been used for measuring the power
consumption by servers, virtual machines, desktops, laptops, and software applications running on a
computer. The estimates for the power usage of individual components (CPU/Monitor/disk/”base”)
are provided while running the application. The report consists of power consumption by CPU, monitor,
hard disk, and base (base power is the power used by PC even when it is idle). All the numbers are in
watts. The total power consumption is also displayed.

Figure 1: A Joulemeter

Journal, Advances in Mathematical & Computational Sciences
 Vol. 11 No. 2, June, 2023

www.isteams.net/mathematics-computationaljournal

50

TimeStamp
A timestamp is a sequence of characters or encoded information identifying when a certain event
occurred, usually giving date and time of day, sometimes accurate to a small fraction of a second. A
timestamp is the time at which an event is recorded by a computer, not the time of the event itself. In
many cases, the difference may be inconsequential: the time at which an event is recorded by a
timestamp (e.g., entered into a log file) should be close to the time of the event. This data is usually
presented in a consistent format, allowing for easy comparison of two different records and tracking
progress over time; the practice of recording timestamps in a consistent manner along with the actual
data is called timestamping.

3.3 Algorithm Implementation Languages
The three sorting algorithms and the newly developed KSU hybrid sort were run using three different
programming languages. This is to:
 Determine the effect of changing the datasize on energy consumption..
 Determine how energy is consumed when changing the implementation language.
 Give a clue as to why energy consumption varies between languages.

Merge, Quick, Conventional Insertion and the newly developed KSU hybrid sorting algorithms were
implemented using Java, C and Python Programming Languages. The choice of programming language
was categorized based on:

• Virtual machine based languages: Java (compiled and interpreted language)
• Native Languages: C (Compiled language)
• Scripting Languages: Python (Interpreted language)

Two algorithm implementation styles (Iterative and recursive) were used. Recursion is when a
statement in a function calls itself repeatedly. The iteration is when a loop repeatedly executes until
the controlling condition becomes false. The key difference between recursion and iteration is that
recursion is a mechanism to call a function call within the same function while iteration is to execute
a set of instructions repeatedly until the given condition is true. Recursion and Iteration are major
techniques for developing algorithms and building software applications. The Experiments were
conducted on the same computer configuration, and running on Window 7. The sorting algorithms
were run on a laptop with the following configuration, HP 630 Notebook PC, 4GB RAM, Intel(R)
Core(TM) i3 @2.53 processor.

3.4 Performance Evaluation Metrics
CPU power utilization
This is a measure of Central Processing Unit (CPU) power utilized by Sorting Algorithm. Merge sort,
Insertion sort and Quick sort algorithms were implemented using C, Java and Python. Dev C++ and
Net beans Integrated Development Environments were used for C and Java programming languages
respectively. Python 3.6.0 was used in the implementation of python codes. The sorting algorithms
were implemented using recursive and iterative Algorithm implementation styles. Each of the
algorithms was implemented in three programming languages, Merge sort and Quick sort algorithms
were implemented using the iterative and recursive version for each programming languages.

Journal, Advances in Mathematical & Computational Sciences
 Vol. 11 No. 2, June, 2023

www.isteams.net/mathematics-computationaljournal

51

Data sizes ranges from one hundred thousand (100,000) to five hundred thousand (500,000) at an
interval of one hundred thousand. The integers for each data size were randomly generated using the
rand() function. The sorting algorithms were placed in functions and classes and called in the main
function and class.

Immediately, input data size and click ok to start sorting. The power measurement was stop
immediately sorting is completed. The execution time was displayed in millisecond. The start time and
end time was used to trace power consumption for the sorting. The experiment is repeated five times
for each algorithm using one data size and one programming structure (iterative or recursive). The
average of the five experiments was recorded as the value for the data size.

Execution Time
The Execution Time T is the time that it takes for an algorithm to execute. Execution time for sorting
was measured using system clock imported from programming langauge’s libraries.

Figure 2: The Algorithm for Execution Time

System.cuurentTimeMillis(), time(Null) and datatime , timeit.default_timer() were time functions used
for Java, C and Python Programming Languages respectively. Execution Time was derived by
subtracting Start time from end time. Measured times were in seconds.

Energy Formula

Algorithm Energy 𝐸𝑎 = 𝑃 𝑋 𝑇

𝑤ℎ𝑒𝑟𝑒 𝑃 = 𝐶𝑃𝑈 𝑃𝑜𝑤𝑒𝑟 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑊)𝑎𝑛𝑑 𝑇 = 𝑡ℎ𝑒 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒(𝑠).

3.5 Sorting Algorithms
Conventional Insertion Sort Algorithm
Insertion sort is an iterative sorting algorithm. The main idea of this is that at each iteration, insertion
sort removes an element, find its ordered position in the sorted array of the previous elements and
inserts it there. The algorithm can be written as below:

Start_Time Invoke _System_clock
 Call_sortingAlgorithm_class/method
 End_Time Invoke_System_Clock
 Execution_Time = End_Time - Start_ Time

Journal, Advances in Mathematical & Computational Sciences
 Vol. 11 No. 2, June, 2023

www.isteams.net/mathematics-computationaljournal

52

 Figure 3: Algorithm of the Conventional Insertion Sort

Iterative Quick Sort Algorithm

 Figure 4:Iterative Quick Sort Algorithm

function insertionSortR (array A, int n)
 if n >1
 insertionSortR (A, n-1)
 x = A[n]
 j = n – 1
while j >= 0 and A[j] >x
 A[j+1] A[j]
j j – 1
 end while
 A[j+1] = x
 end if
End function

Push the range (0...n) into the stack
Partition the given array with a pivot
Pop the top element.
Push the partitions (index range) into a stack if the
range has more than one element

Journal, Advances in Mathematical & Computational Sciences
 Vol. 11 No. 2, June, 2023

www.isteams.net/mathematics-computationaljournal

53

Iterative Merge Sort Algorithm

Figure 5: Iterative Merge Sort Algorithm

Improved Quick Sort Algorithm
Quick sort is very popular since it is the fastest known general sorting algorithm in practice which
provides best run-time in average cases while Insertion sort, on the other hand, works very well when
the array is partially sorted and also when the array size is not too large. Using the partition approach
of the quicksort algorithm the sorting procedure is commenced until we get to a sub arrays whose size
is less than a given cut-off-size which distinguishes between the small and large arrays. At the end of
this process, we have an array constituting of sub-arrays of sizes less than or equal to the cut-off size
that are not sorted themselves but as a whole they are sorted.

Figure 6: Improved Quicksort using first element as pivot

Push the range (0...n) into the stack
Partition the given array with a pivot
Pop the top element.
Push the partitions (index range) into a stack if the range has more than
one element

QUICKSORT (A, p, r)

If p<r
q= PARTITION (A, p ,r)
QUICKSORT(A, p, q)
QUICKSORT(A, q + 1, r)

PARTITION (A, p, r)
x = A[p]
i = p – 1
j = r + 1
while TRUE

repeat
j = j -1

Until A[j] <= x

repeat
i = i +1

Until A[i] >= x

Journal, Advances in Mathematical & Computational Sciences
 Vol. 11 No. 2, June, 2023

www.isteams.net/mathematics-computationaljournal

54

Modified Insertion Sort
The next procedure was that insertion sort was performed over the entire array to get a sorted result.
In the process of running the insertion, binary search is used for comparison which from literature will
lead to a time complexity of 0(nlogn) as compared to 0(n2) in the worst case. In this research, we will
try to combine these two algorithms (Quick sort and insertion sort) in other to take advantage of the
strength of these two sorting techniques (the speed of quick sort and also the benefit of effectiveness
of insertion sort) using binary search for comparison. Afterwards, hybrid sort (KSU hybrid sort)
algorithm (combination of insertion and quick), which is optimum in the sense of minimum average
run-time since reducing the execution time has a great effect on the total energy consumption of any
computing device.

Energy –Efficient KSU Hybrid Sorting Algorithm

Flowchart of the design of Energy-efficient KSU Hybrid Sorting Algorithm

Figure 7: Overview of KSU Hybrid Sorting Algorithm

Journal, Advances in Mathematical & Computational Sciences
 Vol. 11 No. 2, June, 2023

www.isteams.net/mathematics-computationaljournal

55

Figure 8: Program flow of the KSU Hybrid Sort Algorithm

3.6 Metrics Overview
Algorithm Metric Overview

Figure 9: Algorithm Metrics Overview

Journal, Advances in Mathematical & Computational Sciences
 Vol. 11 No. 2, June, 2023

www.isteams.net/mathematics-computationaljournal

56

##Programming Language Metric Based

Figure 10: Programming Language Metric Based

3.8 Software Setup
Merge sort, Insertion sort and Quick sort algorithms were implemented using C, Java and Python. Dev
C++ and Net beans Integrated Development Environments were used for C and Java programming
languages respectively. Python 3.6.0 was used in the implementation. The sorting algorithms were
implemented using recursive and iterative styles. Each of the algorithms was implemented in three
programming languages, Merge sort and Quick sort algorithms were implemented using the iterative
and recursive version for each programming languages. Data sizes ranges from one hundred thousand
(100,000) to five hundred thousand (500,000) at an interval of one hundred thousand.

 The integers for each data size were randomly generated using the rand() function. The sorting
algorithms were placed in functions and classes and called in the main function and class. Time stamp
was placed directly above the called function containing the sorting algorithm and another time stamp
was placed directly below the called sorting function. This is to ensure that the execution time captured
is solely for the sorting algorithm. Execution time was derived by subtracting the start time from end
time. Power consumed was measured using Joule meter.

To carry out the experiment, launch Joule meter and the IDE (Dev C++ or Net beans). Run the program,
a request to input data size was displayed. Click on browse on Joule meter and specify file name to
store power consumed by sorting algorithm per millisecond and recorded. Click on the start button on
the Joule meter to record power measurement. Immediately, input data size and click ok to start
sorting. The power measurement was stop immediately sorting is completed. The execution time was
displayed in millisecond. The start time and end time was used to trace power consumption for the
sorting. The experiment is repeated five times for each algorithm using one data size and one
programming structure (iterative or recursive). The average of the five experiments was recorded as
the value for the data size.

Native

Programming
Language

C

Virtual
Machine Based

Recursive

Java

Iterative
Scripting Python

Journal, Advances in Mathematical & Computational Sciences
 Vol. 11 No. 2, June, 2023

www.isteams.net/mathematics-computationaljournal

57

4. RESULTS AND DISCUSSION OF RESULTS

In this section, the presentation and discussion of results from the implementations in chapter three
were made in order to evaluate the algorithms performance, to make comparison and deductions
based on the energy consumption of the four sorting algorithm using the three programming
languages.

Table 1: Energy Comparison of Iterative sorting Algorithms Implementations in Java

 Energy Consumption(Joule) of three Iterative sorting Algorithms implemented in Java

DATA
SIZE
(000)

INSERT
ION

MERGE
SORT

QUICK
SORT

KSU
HYBRID
SORT

% Reovition
KSU to
Insertion

%
Reovitio
n KSU to
Merge

%
Reovition
KSU
 to Quick

100
76.924
23296

0.4170
88

0.388
64 0.27918 27454% 49% 39%

200
886.29
12867

0.8990
96

0.717
664 0.57002 155384% 58% 26%

300
3942.7
9201 1.7496 0.988

5 0.7785 506360% 125% 27%

400
10900.
63841

2.1745
92

1.365
188 1.13637 959151% 91% 20%

500
25093.
63495 2.6344 1.656

24
1.70149
2 1474702% 55% -3%

The energy consumption of the newly developed KSU Hybrid sort is lower than the energy consumed
by the insertion, merge and the quick sort implemented in Java Programming language.

Table 2: Energy Comparison of Iterative sorting Algorithms Implementations in C

 Energy Consumption(Joule) of three Iterative sorting Algorithms implemented in C
DATA
SIZE('00
0)

INSER
TION

MERG
ESORT

QUICK
SORT

KSU
HYBRID

% Reovition of
KSU to Insertion

% Reovition of
KSU to Merge

% Reovition of
KSU to Quick

100
124.6
73909

0.323
556

0.143
748

0.096
8247 128663% 234% 48%

200
564.4
45199

0.726
528

0.237
5

0.383
905 146927% 89% -38%

300
1203.
68915

1.414
728

0.485
688

0.671
828 179066% 111% -28%

400
2173.
65748

1.791
912

0.678
912

1.198
771 181224% 49% -43%

500
3360.
21043

1.926
332

1.326
68

1.797
643 186823% 7% -26%

Journal, Advances in Mathematical & Computational Sciences
 Vol. 11 No. 2, June, 2023

www.isteams.net/mathematics-computationaljournal

58

The energy consumption of the newly developed KSU Hybrid sort is lower than the energy consumed
by the insertion, merge and the quick sort implemented in C Programming language with low data size
but increases as the data size increase compared to other sorting algorithm.

Table 3: Energy Comparison of Iterative sorting Algorithms Implementations in Python

 Energy Consumption(Joule) of three Iterative sorting Algorithms implemented in Python
Data Size Insertion MergeSort Quick sort KSU Hybrid Sort
100,000 76723.02136 75.25877822 61.55288501 10.49974
200,000 334925.2484 147.4104068 132.4095482 15.393924
300,000 678011.6974 229.2594413 205.3952788 71.422364
400,000 1219684.322 320.2936903 282.8371916 134.315792
500,000 2097651.857 448.7777238 335.5805971 192.8384

The energy consumption of the newly developed KSU Hybrid sort is lower than the energy consumed
by the insertion, merge and the quick sort implemented in Python Programming language.

Table 4.35Energy Comparison Of KSU hybrid sort Algorithms Implementations In C, Java and Python

Data Size C Java Python
100,000 0.0968247 0.207974 10.49974

200,000 0.383905 0.4473924 15.393924

300,000 0.671828 1.2106564 71.422364

400,000 1.198771 1.81773792 134.315792

500,000 1.797643 1.979624 192.8384

Generally, the Energy consumed by the scripting language (Python) is significantly higher than the
virtual based language and also to the native code language. It was noted the high energy consumption
of the scripting language which can be attributed to the fact that there is the need to interpret then
execute the algorithm. This additional step clearly has a higher value in terms of energy consumption

5. CONCLUSION

Energy management plays a major role in determining the Sorting algorithm to be used during the
course of building a system. Energy management has become an important issue in computing
environments. Therefore, measuring the energy consumption of software is the first step in order to
produce an energy efficient code to complement other hardware and system-based approaches.
Developers over the years made significant effort to optimize hardware component in pursuant of an
energy efficient device treating the algorithm as a black box. The research work analyzed the energy,
time execution and power consumption of four different sorting algorithms, the relative
implementation in three distinct languages over an average of five data sizes.

Journal, Advances in Mathematical & Computational Sciences
 Vol. 11 No. 2, June, 2023

www.isteams.net/mathematics-computationaljournal

59

5.1 Contribution to knowledge
The contributions of this research work are a series of experimentations aimed at determining the
execution time, power and Energy consumption of four Sorting Algorithms implemented over five
randomly generated data sizes that are ran five times to compute its average for Execution Time,
Power and energy, in three Programming languages (A native language, C; Virtual machine-based
language, Java and Scripting language, Python. From the experiment, insertion sort has the highest
energy consumption. An improved sorting algorithm called KSU hybrid sort was developed to take the
advantage of the strength of the Quick sort and insertion sort. KSU Sort from experiment has less
energy consumption than both quick sort and insertion sort in almost all cases. KSU hybrid sort is
therefore better energy efficient than the Quick. Merge and insertion sort algorithms in most cases.
Our research therefore provides the basic information to choose a specific sorting implementation to
minimize energy consumption for ener

REFERENCES

1. Adel Noureddine (2014)”Towards a better understanding of the energy consumption of
software systems”[cs.SE]. Universite des Sciences et Technologie de Lille I. 2014. [Online]
https://tel.archives-ouvertes.fr/tel-00961346v2.Retrieved on 9/9/2016.

2. Christian Bunse, Hagen Hopfner, Essam Mansour and Suman Roychoudhury,” (2009)
Exploring the Energy Consumption of Data Sorting Algorithms in Embedded and Mobile
Environments” In Mobile data Management Systems, Services and Middleware, 2009. MDM
’09 Tenth International Conference on May 2009, pp 600-607. Retrieved [Online]
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.543.8109&rep=rep1&type=pdf
on 29/09/2017.

3. Deepthi .T, Birunda Antoinette Mary (2018) “Time and Energy Efficiency: A Comparative Study
of Sorting Algorithms Implemented in C” In International Conference on Advancements in
Computing Technologies (IJFRCSCE) -ICACT 2018 ISSN: 2454-4248 Volume: 4 Issue: 225–27
Available @ http://www.ijfrcsce.org. Retrieved 20/5/2018

4. Essays, UK. (2013). Modified Insertion Sort Algorithm: Binary Search Technique. Retrieved
from https://www.ukessays.com/essays/computer-science/modified-insertion-sort-
algorithm-binary-search-1967.php? on 29/08/2018

5. Essays, UK. (2013). Increasing Time Efficiency of Insertion Sort. Retrieved from
https://www.ukessays.com/essays/computer-science/increasing-time-efficiency-insertion-
6036.php?vref=1 on 29/08/2018

6. Owoeye, F.O(2016). An empirical comparative study of Time, Energy and Cyclomatic
complexities of a modified two-pivot quichsort algorithm.Thesis (Msc).University of Ibadan.

7. Javier Mancebo, Hector Omar Arriaga, Félix García, Maria Ángeles Moraga, Ignacio García-
Rodríguez de Guzmán, Coral Calero, (2018) "EET: A Device to Support the Measurement of
Software Consumption", Green And Sustainable Software (GREENS) 2018 IEEE/ACM 6th
International Workshop on, pp. 16-22, 2018. Retrieved from
https://ieeexplore.ieee.org/document/8449823/ on 12/08/2018.

8. Kazim Ali (2017) “A Comparative Study of well known Sorting Algorithms”, In International
Journal of Advanced Research in Computer Science.Volume 8, No 1. ISSN No. 0976-5697.
[Online] www.ijarcs.info/index.php/Ijarcs/article/download/2903/2886 retrieved on
19/9/2018

Journal, Advances in Mathematical & Computational Sciences
 Vol. 11 No. 2, June, 2023

www.isteams.net/mathematics-computationaljournal

60

9. Kor A, C. Pattinson, I. Imam, I. AlSaleemi and O. Omotosho (2015), "Applications, energy
consumption, and measurement," In 2015 International Conference on Information and
Digital Technologies, Zilina, 2015, pp. 161-Retrieved
from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7222967&isnumber=72
22934 Retrieved on 12/01/2018.

10. Surabhi Patel, Moirangthem Dennis Singh, Chethan Sharma (2014) “Increasing Time
Efficiency of Insertion Sort for the Worst Case Scenario” In proceedings of Patel
IncreasingTE,retrieved from https://www.semanticscholar.org/paper/Increasing-Time-
Efficiency-of-Insertion-Sort-for-Patel-
singh/19b98726fd50ee4ddbb4ee2e1f59bea1301e3d16?tab=references on 21/01/2018

11. Niklas, Karvonen; Lara Lorna, Jimenez; Miguel, Gomez;Joakim Nilsson; Kikhia Basel Salah;
Josef Hall berg (2017) Classifier Optimized for Resource-constrained Pervasive Systems and
Energy-efficiencyIn International Journal of Computational Intelligence Systems. 2017, 10 -1
1272-1279.10.2991/ijcis.10.1.86 [Online] Retrieved on 3/7/2018

