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ABSTRACTABSTRACTABSTRACTABSTRACT    

 

The general belief among computer users is that there is no problem or function that a computer 

cannot solve if giving enough time and space in the computer memory. Since Turing machines 

and by extension computer was born knowing its limitations, there are still some problems or 

functions that computer cannot solve.  These functions are said to be non-computable. By 

uncomputability we mean certain natural computational problems that cannot be solved by 

universal Turing machine or by computer programs. This leap from the notion of universality to 

impossibility is based on two main factors: 1) the difficulty in determining the “ultimate” behavior 

of a program; and 2) the self-referential character of the universal Turing machine. This paper 

discusses the limits to the power of Turing machine as a computing device with regards to what it 

can compute and what it cannot compute, that is, problems that can be solved and those that defy 

solution by computer and any known algorithm. Finally, the paper argues that there are still 

numerous problems that their algorithms cannot be designed; such problems are therefore said to 

be uncomputable or undecidable.  

 

KeywordsKeywordsKeywordsKeywords: Turing machine, computability, non-computability, computer programs &  

       computation 

 

Article Progress Time StampsArticle Progress Time StampsArticle Progress Time StampsArticle Progress Time Stamps    

    

Article Type: Article Type: Article Type: Article Type: Research Article  

Manuscript ReceivedManuscript ReceivedManuscript ReceivedManuscript Received: 13rd September, 2016 

Review Type: Review Type: Review Type: Review Type: Blind  

Word Count Post ReviewWord Count Post ReviewWord Count Post ReviewWord Count Post Review: 6107 

Review/AccReview/AccReview/AccReview/Acceptance Information Senteptance Information Senteptance Information Senteptance Information Sent : 16th Dec, 2016   

Final AcceptanceFinal AcceptanceFinal AcceptanceFinal Acceptance:: 31st d Dec, 2016 

DOI PrefixDOI PrefixDOI PrefixDOI Prefix: 10.22624     

Article Citation Format Article Citation Format Article Citation Format Article Citation Format     

E.E. Ogheneovo (2016) The Limits of Turing 

Machine as a Computational Model. Journal 

of Digital Innovations & Contemp Res. In Sc., 

& Eng  Vol. 4, No. 4. 

Pp 1-12  

 



                                                                                                                                                               

    

 

2 

 

 
                    Vol. 4  No. 4, Dec. 2016 

        

1. 1. 1. 1. INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION    

 

The quest by scientists and humanity in general to understand nature and to master it has led to 

several questions and numerous efforts to build artificial intelligence machines in order to provide 

answers to these questions. One such machine is the Turing machine proposed by Alan Turing in 

1936 [1]. Since then, the Turing machine has been a standard acceptable model of computation.  

However, ever since the Turing machine was proposed, several questions have been raised by 

mathematicians, computer scientists, and physicist as to the computational power and dynamic 

behavior of the machine [2]. Turing machines have three main properties that model algorithmic 

computation: (1) it has closed computation; (2) their recourses (time and memory) are finite; and 

(3) they have fixed behavior (i.e., all computations starts in the same configuration) [3] [4].    

 

Since computer science was born knowing its limitations, the strength of the universal machine 

(i.e., Turing machine) leads directly to a negative consequence of uncomputability [5] [6] [7]. By 

uncomputability we mean certain natural computational problems that cannot be solved by 

Turing machines or, by extension computer programs. This leap from the notion of universality 

to impossibility is rooted in two basic issues: 1) the difficulty in determining the “ultimate” 

behavior of a program; and 2) the self-referential character of the universal Turing machine T [8]. 

In the first case, recall that our universal machine Tu simply performed a step-by-step simulation 

of a Turing machine Tm on an input n. This means that if Tm computes forever, without halting, 

then Tm’s simulation will run forever as well. This phenomenon is often referred to as “infinite 

loop.” A situation whereby a machine or program run forever without producing desired result—a 

program keeps running without producing any result or output [9]. This situation exists if we use 

GO TO statement in a program if there is no other line of code or statement to halt the program  

 

The major property of Turing machines and all other equivalent models of computations is 

universality. That is, there exists a Turing machine, Tu, that can simulate any other Turing 

machine. Turing machine is very versatile in that it can reference itself. This ability of self-

referencing is the main reason that makes Turing machines and other models versatile for 

computing [10]. Thus Tu can simulate an arbitrary Turing machine on arbitrary input. The 

universal machine achieves this by reading both the description of the machine to be simulated 

and the inputs from its own tape. This universality of Turing machine makes it possible for it to 

solve or compute any problem that a computer can also compute [11]. Alan Turing introduced 

this machine in 1937. Turing machines are equivalent to algorithms, and are the theoretical basis 

for modern computers. Yet it is often very difficult to create and maintain Turing machines for all 

problems. Doing this will consume a large amount of memory space, hence, a Turing machine is 

limited in its computational capabilities [12] [13].  

    

2. DEFINING ALGORITHM AND TURING MACHINES2. DEFINING ALGORITHM AND TURING MACHINES2. DEFINING ALGORITHM AND TURING MACHINES2. DEFINING ALGORITHM AND TURING MACHINES    

 

The concept of algorithm was used in building Turing machines [14] [15]. Various definitions of 

algorithm abound. However, we consider a few in this paper including the one by Knuth. In 

defining algorithm, we consider these definitions:    

    

Definition 1:Definition 1:Definition 1:Definition 1: An algorithm is a step-by-step technique for solving a problem. 

Definition 2: Definition 2: Definition 2: Definition 2:     An algorithm is a self-contained step-by-step set of operations to be performed in  

                                            solving a problem. 

Definition 3: Definition 3: Definition 3: Definition 3:     An algorithm is a finite set of instructions that, if followed, accomplishes a 

particular task. 
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Definition 4: Definition 4: Definition 4: Definition 4: An algorithm is an effective technique expressed as a finite list of well-defined 

instructions for calculating a function. 

 

From these definitions, it is very clear that there are three main properties that model algorithmic 

computation or Turing machines: (1) it has closed computation; (2) their recourses (time and 

memory) are finite; and (3) all computations start in the same configuration [16]. All these 

properties are also exhibited by an algorithm. From these definitions, three common properties 

of all algorithms are as stated earlier. That is, those properties listed as the properties of Turing 

machines.  

    

2.1 Describing Turing Machines2.1 Describing Turing Machines2.1 Describing Turing Machines2.1 Describing Turing Machines    

A Turing machine TM is specified by a finite alphabet ∑, a finite set of state K with a special 

element s (the starting state),and a transition function σ : K ∑ →{K {yes, no, halt})  ∑  {←, 

→, –}. It is assumed that ∑, K, {yes, no, halt}, and {←, →, –} are disjoint sets, and that ∑ contains 

two special elements ,  representing the start and end of the tape, respectively. Turing 

machines are simple, abstract computational devices intended to help investigate the extent and 

limitations of what can be computed [17]. They are similar to finite-state automata and pushdown 

automaton except that they are more powerful in their computational capabilities than these other 

computing devices [18]. Both have a finite-state machine as a central component; both have 

additional storage. However, the major differences between them are:  (1) a pushdown automaton 

uses a stack for storage, a Turing machine uses a tape that may be infinite at both ends or 

bounded at one end; (2) the read/write head of a pushdown automaton allows it to move in only 

one direction—left to right, whereas in a Turing machine, the read/write head allows it to move in 

either direction (left-to-right or right-to-left) thus allowing a Turing machine to access items in an 

arbitrary manner; (3) Turing machines receive their input written on the same tape which they 

also use for storage; and (4) Turing machines control the head position to where reading and 

writing on the tape is performed [19] [20].  

 

Also, a Turing machine differs from a finite automaton in a number of ways: 

• A Turing machine can both write on the tape and read from it 

• A read/write head can move in both directions, that is, to the left and to the right 

• The tape is infinite 

• The special state for rejecting and accepting take effect immediately. 

 

However, unlike the other automata we have considered so far, a Turing machine does not read 

“input”. Instead, there are usually symbols on the tape before the Turing machine begins; the 

Turing machine can decide to read some, all, or none of these symbols [21] [22]. As said earlier, 

a Turing machine is an automaton with random—access memory. They differ from other 

automata we considered earlier in that they have an infinite memory—infinite in both directions. 

 

 

    

    

    

    

    

                                Fig 1: A typical TurFig 1: A typical TurFig 1: A typical TurFig 1: A typical Turing machineing machineing machineing machine    
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Figure 1 shows a typical Turing machine. As seen in the figure, a Turing machine consists of three 

components, namely: 

• Tape: Tape: Tape: Tape: The tape consists of an infinite set of cells, each of which can hold exactly one 

symbol. The tape acts as the memory of a Turing machine 

• Control Unit: Control Unit: Control Unit: Control Unit: This part consists of an enhanced form of finite state machine, and is used 

for processing of symbols. 

• Read/Write Head:Read/Write Head:Read/Write Head:Read/Write Head: It can also be simply referred to as head. It mediates between the tape 

and the control unit. The control unit component interacts with the tape by reading from 

the current position of the head and also writing to the current position on the tape. The 

control unit can also make the head move to the nearest cell (left or right) of the tape. 

 

Depending on the current state the control unit is in, and depending on the tape contents at the 

location (cell) where the head is, a Turing machine then determine: 

(i) Its next state 

(ii) How to interact with the tape. This can be done in either of three (3) ways: 

• Write a symbol on the tape and remain in the same position (i.e., not moving) 

• Move one cell to the right 

• Move one cell to the left 

As we know it today, Turing machines form the basis or foundation of modern theoretical 

computer science based on Church-Turing Thesis which state that a function is computable in the 

intuitive sense if and only if it is Turing computable. That is, is a function is computable in the 

intuitive sense, then it is a Turing machine that computes it or it is Turing-computable [23]. 

    

2.2 Com2.2 Com2.2 Com2.2 Computation Definedputation Definedputation Definedputation Defined    

Several researchers have variously defined computation in different ways. In the early 1930s at 

about the period Turing proposed his machine, the Turing machine, Kurt Gӧdel (1934), Alonzo 

Church (1934), Emil Post (1936), and Alan Turing (1937) independently defined computation 

[24]. Gӧdel defined computation as the evaluation of recursive functions; Church defined it in 

terms of lambda calculus, that is, the evaluation of lambda expressions; Post defined computation 

as series of strings successively rewritten based on a given set of rules; and Turing defined it as the 

sequence of states of an abstract machine with a control unit and a tape [25]. However, the 

generally acceptable definition at the time which was based on the concept of Turing machine is 

“the execution of sequence of halting Turing machines or their equivalent.” Such a machine must 

provide an answer (yes or no) or halt. Thus if the machine halts, it means that such a function or 

problem being solved has no solution and is therefore said to be non-computable or undecidable 

[26] [27].   

 

Formally, we define computation using the mathematical concept of Turing machine as any 

process that can be carried out by a computer [28]. The formal definition of computation is as 

follows: 

    

DefDefDefDefinition: inition: inition: inition: Let M = Q, ∑, σ, qo, F) be a finite automata and w= w1w2…wn be a string over ∑. Then 

M  accepts w if a sequence of states ro, r1, …,rn exist in Q such that the following holds: 

i. ro = qo, i.e., the machine starts its computation in the start state;  

ii. σ(ri, wi+1) = ri+1 for i = 0, 1, …, n-1, i.e., as long as input is available the machine goes from 

state to state according to its transition function σ 

iii. rn  F, i.e., the machine accepts its input if it ends up in an accept state. 
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Since computation is defined based on the principles of Turing machine, it suffices to say that 

such a machine must be powerful enough to perform any computation that a computer can 

compute. Turing machines are known to be able to carry out any computation that current 

computers are capable of. Computation as used here does not mean mathematical calculation 

such as the computation of the product of two numbers or the logarithm of a number. 

Computation as used here simply means all kinds of computer operations, including data 

manipulation, information storage and retrieval, etc [29]. It involves machine readability. That is, 

for a language to be machine readable, it must have a simple structure to allow for effective 

translation. First, there must be an algorithm to translate a language, that is, a step-by-step process 

that is unambiguous and finite. Secondly, the algorithm must not be too complex [30]. 

    

2.2 Computational2.2 Computational2.2 Computational2.2 Computational    ProblemsProblemsProblemsProblems    

Computable functions are functions that can be calculated using a mechanical calculating device 

given infinite amounts of time and storage space [31]. As stated earlier, Turing machines are very 

powerful; they can be used to compute any problem that is computable. That is, they can 

compute any problem that has effective procedure or algorithm that physical machine such as a 

computer can compute. Therefore, for a very large number of computational problems, it is 

possible to build a Turing machine that will be able to perform that computation. According to 

Alan Turing, a number is Turing-computable if there exist a Turing machine which starting from 

a blank tape computes an arbitrarily precise approximation to that number [32]. Thus Turing 

machines can do more than just writing-down numbers. They can therefore also be used for 

computing numeric functions and any other computable functions. As noted by Milner [33], 

Turing machine is capable of solving natural, interactive, and continuous information processes 

often seen today. 

 

According to Church-Turing thesis, any function which has an algorithm is computable [34] [35]. 

There are many models of computation that have been proposed for solving functions that are 

computable. These computational models are, however, equivalent in terms of their power to 

computers. Although these models use different representations for the functions, their inputs, 

outputs, and translations exist between any two models. Each computable function takes a fixed 

number of natural numbers as arguments. However, the output can be of interpreted as a list of 

numbers using functions that are paired. We can associate a partial function with each Turing 

machine. In this case, the input to the Turing machine is represented as an n-triple (e.g. X1, …, 

Xn).   The integer represented by the maximal binary is separated by blank. This way, the Turing 

machine signs some bits or 0 if a blank is scanned when the machine halts. This is referred to as 

the output of the computation. This way, each Turing machine defines a partial function from n-

tuples of integers onto the integers, n > 1.     

    
    

3.3.3.3.    COMPUTABLE FUNCTIONS COMPUTABLE FUNCTIONS COMPUTABLE FUNCTIONS COMPUTABLE FUNCTIONS     

 

A function is computable if there exist an algorithm that can be designed to solve such a function. 

By computable function, we mean, given an input of the function domain, it can return the 

expected output. That is, a function is said to be computable if for a given input its output can be 

calculated by a finite mechanical procedure. Computable functions are also called recursive 

functions.    

    

Definition: Definition: Definition: Definition: A function is computable or effectively calculable or simply calculable if it can be 

calculated by a finite mechanical procedure. 
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A natural definition of a computable function f on  allows for the possibility that f(x) may not be 

defined for all x , because algorithms do not always halt. According to Alan Turing, a number 

is Turing computable if there exist a Turing machine that is capable of computing an arbitrarily 

precise approximation to that number. Computable numbers are the real numbers that can be 

computed to any desired precision by an algorithm. Turing defines computable numbers as 

sequences of digits interpreted as decimal fractions between 0 and 1. In a similar fashion, Minsky 

[36] defines a computable number as a number for which there is a Turing machine which, given 

a on its initial tape, terminates with the n digits of that number. A closer look at Minsky’s 

definition shows three important notions which are worth noting: (1) that some n is specified at 

the start of the computation, (2) for any n the computation only takes a finite number of steps, 

after which the machine produces the desired result and then finally halt, (3) that by using Turing 

machine, a finite definition in the form of machines table – is being used to define, what is 

potentially -- infinite string of decimal digits. 

4.4.4.4.    UNCOMPUTABLE PROBLEMSUNCOMPUTABLE PROBLEMSUNCOMPUTABLE PROBLEMSUNCOMPUTABLE PROBLEMS    

Influenced by Gӧdel Incompleteness theorems, Church, Post, and Turing later saw that there are 

certain functions or problems that could not be computed by any known algorithms. In fact, it was 

Turing himself who discovered that his own machine is incapable of solving all problems after he 

initially claimed that his universal Turing machine is capable of solving all problems even though 

his machine can be simulated to any other machine. Such problems are said to be uncomputable 

or undecidable. These problems include: Entscheidungsproblem, the halting problem, NP-

complete problems, Post correspondence problem, Gӧdel Incompleteness theorems, , , , 

combinatorial problems such as molecular computing and    DNA-interconnection processes in 

nature, cellular automata, quantum mechanics, and many other natural phenomenon [37].  

 

Addleman [38] in his study on NP-complete, combinatorial problems, and molecular 

computation uses both the Hamiltonian path problem using DNA computing. Addleman uses 

DNA computing by encoding vertices and edges in DNA such that a large amount of random 

paths is formed in parallel. He found out to his surprise that in every path he considered using 

DNA code, the quantity of the DNA needed growth exponentially with the number of nodes, n. 

Thus it was observed that exponential complexity is not eliminated but only shifted from time to 

space. Addleman concludes that it is possible to carry out computations at molecular level. 

However, what he fails to tell us is whether the same success can be achieved if the same 

approach is used to solve large instances of the same problem. This is because as the number of 

nodes increases, the polynomial time and space increases exponentially and solution to the 

problem becomes more and more unfeasible.  

 

Wolfram [39] discussed the concept of cellular automata using computation complexities. A 

cellular automaton is a machine that has cells in form of grids, each of which have a finite number 

of states such as on (1) and off (0). These grids usually have a finite size.  In other words, the 

cellular automaton is a computer model consisting of memory locations, each having one bit. 

These bits are updated from time to time at regular intervals. Wolfram compared the cellular 

automata to the universal computing machine, the Turing machine, lambda calculus by Church 

and many other computational machines. However, since the cellular automaton is in many ways 

similar to the universal Turing machine, it is believed that it is limited in its computational 

capabilities and it may not be capable of computing certain problems including NP-problems. 



                                                                                                                                                               

    

 

7 

 

 
                    Vol. 4  No. 4, Dec. 2016 

        

The physicists use the concept of quantum mechanics to discuss computation using 

hypercomputer, a computing machine that is far more powerful than the Turing machine [40]. 

Although, the hypercomputer is very fast, robust, and capable of solving a wider range of 

problems, yet it is still limited in its functions. Thus the general belief is that since it is limited in 

its functions, there is no doubt that Turing machine has far more limitations. A few other non-

computable problems are discussed in this paper. 

 

4.1 4.1 4.1 4.1 EntscheidungsproblemEntscheidungsproblemEntscheidungsproblemEntscheidungsproblem    

In1928, David Hilbert proposed the Entscheidungsproblem, David Hilbert posted 23 problems 

that defied solution at the time. One of such problems is the Entscheidungsproblem. In fact, it 

was Hilbert 10
th

 mathematical problem as listed by him. The Entscheidungsproblem problem 

asks for an algorithm that takes as input a statement of a first-order logic based on some axioms 

and answer “Yes” or “No” according to whether the statement is universally valid, i.e., valid in 

every structure satisfying the axioms. By first-order logic we mean a statement is universally valid if 

and only if it can be deduced from the axioms. Thus the Entscheidungsproblem simply ask if an 

algorithm exists that can decide whether a given statement is provable from the axioms using the 

rule of logic [41]. Entscheidungsproblem is a decision problem for first-order logic. Thus 

Entscheidungsproblem ask: Is there an effective procedure (an algorithm) which, given a set of 

axioms and a mathematical proposition, decides whether it is or is not possible from the axioms? 

Mathematicians of that era such as Kurt Gӧdel, Alonzo Church, Stephen Kleene, Alan Turing 

and a host of others, provided some explanations and proofs. In fact, in 1936, both Church and 

Turing independently showed that there is no such algorithm, specifically, there is no algorithm 

for the theory of arithmetic [42]. Church used the concept of lambda calculus and Turing used 

his machine now called Turing machine.  All these proofs point to the fact that the 

Entscheidungsproblem was undecidable. The works of Alonzo Church and Alan Turing were 

later combined and referred to as the Church-Turing Thesis.  

 

4.2 4.2 4.2 4.2 GGGGӧdel Incompleteness Theoremdel Incompleteness Theoremdel Incompleteness Theoremdel Incompleteness Theoremssss    

In 1931, Kurt Gӧdel published his First and Second Incompleteness Theorems often referred to 

as Gӧdel’s Theorems. However, in this paper, we will not be concerned with the proofs of the 

theorem. Our major concern will be to investigate the implications of the theorems to 

computation and why some problems are said to be undecidable. The first theorem states that 

any consistent formal system S within which a certain amount of elementary arithmetic can be 

carried out is incomplete with regard to statements of elementary arithmetic. That is to say, in any 

true axiomatic theory that sufficiently rich to enable the expression and proof of basic arithmetic 

propositions, it will be possible to construct an arithmetical proposition P such that neither P nor 

its negation not(P), is provable from the given axioms. Hence, the system must be incomplete. P 

must, of course, be a true statement of arithmetic [43]. The second theorem states that no 

consistent axiomatic theory is sufficiently rich enough to enable the expression and proof of basic 

arithmetic proposition can prove its own consistency.  

 

These two theorems are hinged on three main concepts: consistency, completeness, and 

decidability. By consistency we mean the set of axioms should be consistent and provable; by 

completeness we mean all mathematical truths should be deducible from those axioms; and by 

decidability we mean there should be a clearly formulated procedure such that, given any 

statement of mathematics, it can be shown within a finite time whether or not that statement 

logically follows the given axiomatic [44]. In dealing with these concepts, standard syntactic 

relationship must be followed rather that semantic relationship.  
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That is, the relationship should be based on structure rather than on truth and meanings. 

Therefore, it suffices to say that a consistent system cannot contradict itself. That is, it is not 

possible to prove both a proposition, say P, and its negation not(P). On the other hand, a 

complete system is one in which it is possible to prove neither P or not(P) for any proposition P 

that is expressible within the system.  

 

Gӧdel’s first theorem is based on the theory of computable function and the second theorem is 

born out of the first to provide an explicit explanation whose existence is asserted in the first 

theorem. Gӧdel Theorems played a significant role in shaping the general intellectual context of 

the 20
th

 century. They are among those mathematical discoveries which became most widely 

known oust mathematics itself [45]. Gӧdel’s invented a numbering system to logical formulas in 

order to reduce logic to arithmetic and used it to prove his incompleteness theorem. His 

numbering system was able to show that simple mathematical operations such as addition, 

subtraction, multiplication, and recursion can be used to prove his incompleteness theorem. 

 

Gӧdel gave a vivid illustration of undecidability by using his numbering system. According to him, 

we can imagine a powerful computer that accept inputs and produce outputs based on certain 

instructions. Suppose there is an integer number, say N, N 1, where N is a prime number  (not 

divisible by any positive integer other than 1 and N itself) by asking the computer to divide N by 

every integer between 1 and N – 1 and then stop when the division is evenly distributed or it 

reaches N – 1. Then Gӧdel’s theorem states that even though the number is properly keyed into 

the computer and by extension a Turing machine, no computer can solve it. Such a number is 

said to be undecidable or non-computable. This assertion will always be true if we consider a 

number like 2. The square root of 2, ( ), for instance has no precise solution no matter how 

long it takes the computer or Turing machine to solve it. Another good example is pi ( ). They 

will eventually end up generating recursive values. Thus the theorems demonstrate the inherent 

limitations of every formal axiomatic system containing basic arithmetic. 

 

4.3 4.3 4.3 4.3 The Halting ProblemThe Halting ProblemThe Halting ProblemThe Halting Problem    

The halting problem [46] is one of the most famous problems in computer science. This is 

because it has profound implications on the theory of computation and on how we use computers 

in our daily lives. The halting problem is a decision problem in computability theory and 

computation in general. It is stated this way: Given a description of a Turing machine and its 

initial input, determine whether the program, when executed on this input, ever halts (completes). 

The alternative is that it runs forever without halting. In other words, it is like asking a Turing 

machine to answer a question about another Turing machine [47]. It can be shown that it is not 

possible to construct a Turing machine that will answer this question in all cases. Thus the only 

general way to know for sure if a given program will halt on a particular input in all eases is simply 

to run it and see if it halts in which case it may halt or not.. However, it is possible for a program 

to run forever and in this case there will be no solution to the problem as the machine tends to 

run forever especially if the program has the GO TO statement. 

 

The halting problem is therefore called non-computable or undecidable. However, the halting 

problem is easy to solve if the Turing machine is allowed to run forever given input that represent 

a Turing machine that does not itself halt. The halting language is therefore recursively 

enumerable. It must be noted that because Turing machines have the ability to “back-up” in their 

input tape, it is possible for a Turing machine to run for a long time in a way that is not possible 

with the other computation models previously described.  It is possible to construct a Turing 

machine that will never finish running (halt) on some inputs.  



                                                                                                                                                               

    

 

9 

 

 
                    Vol. 4  No. 4, Dec. 2016 

        

We say that a Turing machine can decide a language if it eventually halts on all and give an 

answer. Thus there is limitation to the computing power of Turing machines since no Turing 

machine can solve halting problems. The halting problem is important irrespective of the 

theoretical implications of the question of whether there are languages that are recognizable by a 

Turing machine but are not decidable [48]. For instance, it has implications on the termination 

properties of the software we write and use.  Computer scientists and programmers use software 

that they expect to behave in a decidable manner. As an example, consider the compiler for a 

particular language, we would expect that irrespective of the source code it is asked to compile, 

the execution of such software will always terminate, either successfully (with the compiled code) 

or unsuccessfully, with an indication of where the error in the source code lies.        

    

Although, it has been argued by some researchers that the halting problems is not always 

undecidable, That is, the problems can be solved by carefully designing a correct algorithm and 

they supported their argument using some theorems. However, if we rely on the works of Alan 

Turing and many other contemporaries of his time such as Alonzo Church, Kurt Gӧdel, Emil 

Post, and Stephen Kleene, who all agreed that Turing machine can be simulated to any other 

computing machine which they called universal Turing machine, a standard machine that can be 

used for computation and it is also limited in its computing powers, then one will be tempted to 

conclude that there are still several problems in real life that Turing machines cannot solve. 

 

5. CONCLUSION5. CONCLUSION5. CONCLUSION5. CONCLUSION    

 

The general belief among people or computer users is that there is no problem or function that a 

computer cannot solve no matter how difficult it is, if giving enough time and space in the 

computer memory. Since computer science was born knowing its limitations, there are certain 

problems or functions that computer cannot solve.  These problems are said to be uncomputable. 

This paper discusses the limits to the power of Turing machine and by extension a computer as a 

universally accepted computing device with regards to what it can compute and what it cannot 

compute, that is, problems that can be solved and those that defy solution by any known 

algorithm. The strength of the Turing machine leads directly to a negative consequence of 

uncomputability. Thus there are limitations to the power of Turing machines. The halting 

problem, Gӧdel incompleteness problem, the Entscheidungsproblem, the Post correspondence 

problem, the DNA-interconnection processes in nature, cancer, the Cellular automata, the 

quantum mechanics and other natural phenomenon are just some few examples. Turing 

machines are equivalent to algorithms, and are the theoretical basis for modern computers. Yet it 

is often very difficult to create and maintain Turing machines for all problems. Doing this will 

consume a large amount of memory space, hence, a Turing machine is limited in its 

computational capabilities. Finally, the paper argues that there are still numerous problems that 

no algorithms exist for solving them. 
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