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ABSTRACT 
 
This paper presents an approach to Patient Similarity Analysis (PSA) based on a machine intelligence 
system and technology called the Hierarchical Temporal Memory (HTM). The Patient Similarity Metric 
(PSM) used is a novel scoring metric known as the overlap. In order to prove this concept, the overlap 
scoring metric in a HTM Spatial Pooler (HTM-SP) prediction system was applied to real world patient’s 
medical data. Two external HTM parameters, the context and the look-ahead were introduced. A 
variant of HTM-SP was also introduced based on an adaptive look-ahead parameter. The performance 
of the standard and adaptive HTM-SP were evaluated and compared with a Neuro Case Rule (NCR) in 
terms of Percentage Correct Value (PCV). The reported PCV (TRUE, FALSE) estimates showed (80.83, 
46.66), (87.41, 3.33), and (100.00, 40.00), for the standard HTM-SP, the adaptive HTM-SP and the 
NCR approaches respectively. 
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1. INTRODUCTION  
 
The Patient Similarity Analysis (PSA) is an important step in the field of medical diagnosis, where 
Electronic Medical Records (EMR) are used for effective, timely and personalized level based 
treatment of diseases. The time for diagnosis of a diseased patients and the need for laboratory 
screening can be reduced marginally by using the similarity of symptomatic features previously 
recorded in patient’s medical data.  
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PSA techniques uses tools of machine learning, artificial intelligence algorithms combined with pure 
statistical or logical models to reduce the feature size and in the process discover useful features that 
can assist in making precise medical decision. Most recent research directions in PSA focuses on 
prediction accuracy and computational run time of the similarity or matching algorithm used in Patient 
Similarity Metric (PSM). Thus, the performance evaluation of any PSA scheme is determined by the 
effectiveness of its PSM algorithm. Also artificial intelligence algorithms that have implicit support for 
similarity relations with a good foundation in biology and neuroscience holds better promises for 
automated medical diagnosis. 
 
In this paper, an emerging neural technique that have the potential to solve a diversity of medical 
related problems while not losing focus on some of the core biological components of the brain, is 
presented. This technique, framework and tool for machine intelligence is called the Hierarchical 
Temporal Memory (HTM) and has been widely applied by many researchers in diverse fields of human 
endeavor. 
 
2. PREVIOUS WORKS 
 
The field of Patient Similarity Analysis (PSA) is currently receiving serious attention. In [1], a Patient 
Similarity Metric (PSM) called SQL-cosine algorithm was proposed for analysis of medical datasets. 
Their PSM method was implemented on the PostgreSQL and MonetDB Databases using both the 
column and row oriented structures respectively. The Optimization technique was based on batching 
to speed up computation. Their system was evaluated on two widely utilized Electronic Medical 
Records (EMR) and the result showed that the column oriented structures though fast in speed still 
have challenges of batch improvement factors. In [2], the prediction of occurrence of Acute 
Hypotensive Episode (AHE) using Patient Similarity Metric (PSM) based on Locally Supervised Metric 
Learning (LSML) and the Mahalanobis distance was proposed. 
 
Wang et al [3] developed a framework called the SimProX system for the early prognosis of disease 
using Euclidean distance as similarity metric. In [4], a Bag-of-Words features framework for automatic 
annotation of disease labels of multi-source patient data in Intensive Care Units (ICU). The proposed 
model framework focused on learning disease correlation locally in the patient data, learning similarity 
between patients in the label space rather than the feature space. Their system uses disease 
correlations in similarity measurements, and an alternating algorithm to optimize an objective function 
based on the Squared Hinge Loss (SHL). 
 
Morid et al [5] applied the K-Nearest Neighbor algorithm to ICU Mortality predictions. They developed 
the Patients-based Prediction Modeling Framework (PPMF) which utilized aggregation classifiers. Their 
similarity metric uses a direct access technique to sample data instances in a multidimensional 
Euclidean space. Their proposed technique was shown to outperform a machine learning technique 
used in a competition (MIMIC-III) dataset. In order to build mortality prediction models, Lee et al [6] 
used a cosine similarity patient similarity metric (PSM) for the identification of patient similarities. Their 
reported results showed that the proposed PSM technique will outperform existing ICU severity of 
illness scores; however, this may be at the cost of the computational complexity of their proposed PSM 
technique.    
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In [7], a similarity based approach is compared to a predictive modeling based approach for Mortality 
prediction using MIMIC-II ICU dataset. The similarity approach used was the K-Nearest Neighbor which 
requires the computation of a Euclidean distance while the predictive modeling approach used was 
the Logistic regression technique with L2-regularization. They reported results using Area Under the 
Curve (AUC) and the Cox model for earliest prediction time analysis. Their results showed that the 
prediction model will outperform the similarity model. 
 
In [8], a supervised and unsupervised clustering framework was used for medication planning. Their 
PSA approach used the Mahalanobis distance metric for making ICU predictions on a sample cohort 
data. Performance results were based on Specificity, Sensitivity, F1 measure, Accuracy and AUC. The 
results in [8.Table 2] indicate that the supervised approach is better than the unsupervised.  Gottlieb 
et al [9] predicted the eventual discharge diagnoses using the Jaccard, Euclidean distance with the 
MATLAB logistic regression classifier including 10-fold cross-validation tests on Electronic Health 
Record (EHR) data. They reported results using AUC and F-measure in the MATLAB language [9.Table 
1]. Their results indicate that combining two different EHR datasets leads to a degraded performance 
which is attributed to a phenomenon called “information loss” or feigned knowledge. 
 
A Neuro-Case-Rule approach that combines fuzzy inference techniques with neural networks has been 
proposed in [10] for the diagnosis of Hepatitis A virus using a real world patient data. The proposed 
NCR technique was able to give a 100% Percentage Correct Value (PCV) true estimate and a PCV false 
estimate of 40%. Among these techniques proposed in the literature, the neural approaches have 
potential usefulness in EMR systems and remain favorable candidates for performing PSA tasks; 
however, the question remains: 
 
Can we have a neural technique that is general enough to be applied across all medical domains and 
not limited by excessive hyper-parameter tuning in addition to having desirable property of online 
(continual) learning of streaming medical data? 
 
In this research, we propose a PSA scoring metric called the “overlap”. The overlap is based on the 
notion that the similarity or correlatedness between two entities or data vectors may be measured by 
the sum of all the dot products of the individual constituent elements greater than a pre-specified 
overlap threshold. This approach is very favorable to data vectors that possess sparse distributed 
binary representations. This concept will be further described in the subsequent section. 
 
3. PROPOSED METHODOLOGY 
 
In this section we present the details of the proposed methodology including the patient similarity 
scoring metric, a method for building causal relations and some specific system parameters. 
 
3.1 Hierarchical Temporal Memory 
The Hierarchical Temporal Memory (HTM) is a machine-intelligence but biologically constrained 
computational model of the neocortex, the seat of intelligence in the brain [11]. The HTM is specifically 
good in solving real-world continual learning (or streaming) tasks. The primary operation of HTM is 
based on the formation of Sparse Distributed Representations (SDRs) and then learning to make 
predictions from these representations using ideas of biology and neuroscience.  
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HTM is implemented as a suite of algorithms called the Cortical Learning Algorithms (CLA) which 
represent the core HTM technology or framework [11, 12]. The HTM-CLA consists of two key parts: a 
HTM Spatial Pooler (SP) part for forming Sparse Distributed Representations from real world or 
synthetic data and a HTM Temporal Pooler (TP) part for making predictions on the SDRs formed from 
the HTM-SP.  The SDR architecture follow the notion of sparse coding earlier suggested for learning 
sensory inputs in [13, 14]. 
 
A typical neuron model used in a HTM system implementation is given in Fig.1. This model is inspired 
by neuroscientific studies of activity-dependent synaptogenesis – a phenomenon that hypothesizes 
the growth and origin of the biological synapses stimulated by external sensory signals [15]. In this 
diagram, the connections consisting of the green bulbs represent proximal synapses which are 
typically linearly summed to produce feed-forward activation; distal synapses are represented by 
segments of blue bulbs that are logically summed to give a dendrite spiking neuron activation when 
they exceed a certain recognition threshold value as indicated by the Sigma sign. Feedback and 
context experiences are formed using the distal connections through time.  
 
The HTM-SP comprise of a number of operating parameters that assist in the discovery of a local or 
global solution space in the continual learning paradigm. In this study we are interested in the study 
of two additional key parameters: the look-ahead and context parameters; these parameters are 
described succinctly in a latter sub-section (see Section D).  
 

 
 

Fig. 1: An HTM neuron. Adapted from [16]. 
 
3.2 Patient Similarity Scoring Metric 
As mentioned earlier, the Patient Similarity Metric (PSM) is used based on a scoring metric called the 
overlap. The concept of overlap is as shown in Fig.2. To compute the overlap or match, we require a 
set of internally generated HTM synapses formed from the spatial pooling and an input vector. In the 
figure (Fig.2), both HTM synapses and input vector are represented as binary sparse distributed 
representations (SDRs) – the input binary vector is actually generated from a real time dataset by 
using a suitable scalar encoder as described in [17].  
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The overlap is computed as in (1): 
 


j

jijii zWbo     (1) 

where, 
 ib = is a positive boost factor for exciting each HTM-SP mini-column 

jz = input pattern vector seen by the generative HTM neuron 

ji,  = mini-column indexes comprise of a number of operating parameters that assist in the discovery 
of a local or global solution space in the continual learning paradigm. In this study we are interested 
in the study of two additional key parameters: the look-ahead and context parameters; these 
parameters are described succinctly in a latter sub-section. 
 

 

 
Fig 2: An illustrative example of Overlap processing in an HTM-SP; Source: Ahmad & Hawkins [18]. 

 
3.3 Temporal Aggregation Technique 
The temporal aggregation technique (TAT) for data pre-processing is based on the concept of cause-
and-effect data relations; in the TAT, the SDR formed from the Hierarchical Temporal Memory Spatial 
Pooler (HTM-SP) stage is transformed into a pair-wise mixed integer representation and then passed 
over to an overlapping temporal classification (OTC) stage for post-processing.  
 
The temporal aggregation technique is performed as follows: 
 Step1: A single-column vector matrix of length 1:N having a width of 1 is formed. The variable N 

represents the number of sampled sequences (sample size of SDRs in row-wise orientation) 
obtained from the HTM-SP stage. The elements in this matrix also contain the indexes for 
temporal aggregation. 

 Step2: For each element formed in the matrix generated in Step 1 that is greater than 1, a 
modulus operation is performed such that when there exists a remainder, the element in 
consideration is skipped, otherwise it is selected; the operation in this step results in single-
column matrix of length equivalent to half the sample size of the SDRs used in the 
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aforementioned step. The elements in this matrix also contain a set of even indexes in the matrix 
obtained from Step1 at time instance, t. This set is denoted At(1). 

 Step3: For all elements in the set At(1), form a concatenation of At(1) with At-1(1) 1-step behind as 
{At(1)  At-1(1)}; this concatenation step generates the temporal aggregator index set. We call this 
set of indexes At(agg). 

 Step4: Using At(agg) as index sequence, extract SDR patterns obtained from the HTM-SP stage in 
a temporal aggregated fashion and then perform overlap temporal classification through time.  

 
3.4 System Parameters under Study 
3.4.1 Adaptation of the Look-Ahead parameter 
The look-ahead parameter plays the important role of performing multiple-step forecast in a prediction 
system. In the HTM-SP prediction system, look-ahead parameter is adaptively fine-tuned in an iterative 
manner as sample sequences are formed using the model formula in (2) as: 
 

8/1
)( stepadaptstep nn     (2) 

 
where, 

stepn = the HTM-SP system look-ahead parameter 

 
By close inspection, we see that this formula is equivalent to taking the square root of the look-ahead 
parameter three times. 
Similarity Metric (PSM) is used based on a scoring metric called the overlap. 
 
3.4.2 Context  Parameter 
The context parameter represents the number of past sequences to consider during spatial pooling. 
As the spatial pooling is a continual learning system, the context parameter is applied continually 
during this phase. It is also possible to apply explicit context to the spatial pooling phase i.e. we may 
bias temporally the considered sequences from some other external source. 
 
4. EXPERIMENTAL DETAILS 
 
4.1 Systems Architecture and Performance metrics 
The proposed systems architecture for hepatitis predictions is shown in Fig.3. In this architecture, the 
encoder transforms real world input data signals (comprising patient hepatitis data) into a binary 
representation suitable for spatial pooling; then the Hierarchical Temporal Memory Spatial Pooler 
(HTM-SP) forms sparse distributed representations (SDRs) of the binary representations using the 
similarity matching metric described in Section III sub-section B. The SDRs are temporally aggregated 
and predicted using the Overlapping Temporal Classification (OTC) scheme described in Section III 
sub-section C.  The metrics chosen for evaluating performance includes the Mean Absolute Percentage 
Error (MAPE), and the classification percentage value (PCV) i.e. the percentage of correct prediction 
states (TRUE and FALSE states). The Mean Absolute Percentage Error (MAPE) was chosen as the 
metric for evaluating the performance of the HTM-SP system.  
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The use of MAPE is due to its insensitivity to outliers so it presents an unbiased metric when compared 
to other metrics such as Mean Squared Error (MSE) or absolute errors which exhibit very large 
estimated deviations for increasing/decreasing predicted values - an obvious disadvantage when 
performing comparative evaluations of different techniques. 
 
The percentage correct value (PCV) estimates was used for comparing with the results obtained in 
(Obot & Uzoka, 2009). The PCV estimate gives a good indication of the percentage classification and 
is simple to interpret by non-experts. It can be interpreted as PCV (TRUE) for the percentage of correctly 
classified logical 1 states and PCV (FALSE) for the percentage of correctly classified logical 0 states 
where the logical 1 and 0 states represent the desired hepatitis state. 
 
Accordingly, the experimental tests were conducted using the patient dataset provided in (Obot & 
Uzoka, 2009: Appendix A). which was obtained from a real world survey of three hospitals located in 
Nigeria.  The parameters used for the HTM-SP simulations in the proposed system can be found in the 
Appendix. 
 

 
 

Fig 3: HTM-SP System for performing the PSA simulations. 
 
4.2 Prediction Classification Task 
The classification uses the hepatitis dataset provided in (Obot & Uzoka, 2009). The task is to 
continually and adaptively predict n-step ahead, the condition of a patient (has hepatitis or not) using 
a set of similarity relations built from a history of past patient data comprising encoded hepatitis data 
attributes. In addition, the dataset is presented sequentially instead of using traditional techniques 
such as bagging or random split into a separate and test dataset as in [4].  
 
5. RESULTS AND DISCUSSIONS 
 
5.1 Results 
The prediction result of a typical simulation run using HTM-SP in MATLAB is as shown in Fig.4. The plot 
describes a moving Mean Absolute Percentage Error (mMAPE) for the considered medical dataset 
using default settings (see Appendix).  The percentage average correct value (PCV estimates) results 
of the standard HTM-SP using the best setting of the context and look-ahead parameters are as shown 
in Table 1. These values consist of average PCV (TRUE) and PCV (FALSE) estimates. Also shown is the 
average PCV estimate of the HTM-SP with adaptive look-ahead and the average PCV estimate using 
the NCR technique as reported in [10]. These estimates are obtained after 10 simulation trial runs. 
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Fig 4: Moving average plot of the HTM-SP for 1-step ahead prediction 

 
 
TABLE 1: PCV (TRUE, FALSE)  ESTIMATES COMPARING THE HTM, ADAPTIVE HTM AND THE NCR TECHNIQUES 

PCV VALUES (%) 
PCV PCV PCV 

(80.83. 46.66) (87.41, 3.33) (100.00, 40.00) 
 
Table 2; HTM-SP SYSTEM PARAMETERS 

Parameter Default Values 
Number of columns 250 

Initial Synaptic permanence 0.21 

Dendritic segmant activation threshold 2 

Boost factor 100 

Synapse permanent increment 0.1 

Synapse permanent decrement 0.01 

Context 2 

Look-ahead 3 
 

5.2 Discussion of Results 
The prediction results in Table 1 show that the proposed standard and adaptive HTM technique 
compares favorably with the Neuro-Case-Rule (NCR) approach reported in [10]. As indicated by the 
(PCV) true estimates, NCR attained the best performance with 100% PCV true estimate. The standard 
HTM-SP outperforms both the adaptive HTM-SP and the NRC with higher PCV false estimates.  
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However, the adaptive HTM-SP is promising and has better generalization ability in PCV true estimate 
over the standard one when the context and look-ahead parameters are set to 2 and 3 respectively. It 
remains a matter of further research if the standard/adaptive HTM-SP techniques will play a useful 
role for next generation patient similarity analysis. 
 
6. CONCLUSION AND FUTURE WORK 
 
This presentation proposed an emerging state-of-the-art machine intelligence technique called the 
Hierarchical Temporal Memory (HTM) for patient similarity analysis (PSA) of Electronic Medical Records 
(EMR). HTM does not require a separate training and test dataset and has internal mechanisms for 
handling continual predictions – a very important property for real time medical analysis. The 
implementation uses a special HTM Spatial Pooler (HTM-SP) system with a unique temporal pooling 
strategy based on a matching technique called overlap.  
 
In addition, two explicit HTM-SP parameters called the context and look-ahead parameters with a 
useful technique for building cause and effect relations called the temporal aggregation technique 
(TAT) were introduced. These techniques were applied to the similarity analysis of a reported hepatitis 
patient dataset and compared with the results obtained from the Neuro-Case-Rule. In particular, HTM 
generalized better than the Neuro-Case-Rule technique as long as the look-ahead and context number 
parameters are carefully chosen. HTM also has inherent mechanisms for generating a similarity 
process using the concept of overlap scoring. 
 
In future, the performance of HTM overlap similarity metric including the influence of the context and 
look-ahead parameters for PSA on diverse medical datasets will further be investigated and study on 
other kinds of datasets requiring some sort of similarity measurements conducted. Other interesting 
research directions may also include anomaly detection in similarity measurements or similarity data 
graphs [19], predictive representational learning systems using deep learning [20], developing 
strategies for handling missing data particularly for unstructured (textual) EMR data (see the works of 
Wells et al [21]) and including the use of swarm prediction and optimization algorithms for finding 
reliable and highly accurate patient similarity predictions. 
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