

47

Vol. 2 No. 2, Issue 1, May 2016

 An Improved Intelligent Agent for Mining Real-Time
Databases Using Modified Cortical Learning Algorithms

 Osegi, N.E.

System Analytics Laboratories (SAL)
Sure-GP Ltd
Port-Harcourt

Rivers State, Nigeria.
Department of Information and Communication Technology

National Open University of Nigeria
Lagos State, Nigeria

E-mail: nd@osegi.com, nd@sure-gp.com
Tel: +234 7030081615

Enyindah, P.

Department of Computer Science
University of Port Harcourt

Port Harcourt, Rivers State, Nigeria
E-mail: probi2k3@yahoo.com

Tel: +234 8036710489

ABSTRACT

Cortical Learning Algorithms based on the Hierarchical Temporal Memory (HTM) have been developed
by Numenta Incorporation from which variations and modifications are currently being investigated upon.
HTM offers better promises as a future computational model of the “neocortex” the seat of intelligence in
the brain. Currently, intelligent agents are embedded in almost every modern day electronic system found
in homes, offices and industries worldwide. In this paper, we present a first step in realising useful HTM
like applications specifically for mining a real-time dataset based on a novel intelligent agent framework,
and demonstrate how a modified version of this very important computational technique will lead to
improved recognition.

Keywords: Approximate Computing, Associative Learning, Cortical Learning Algorithms, Embedded

Systems, Hierarchical Temporal Memory, Intelligent Agent, Mode Synthesizing Machines,

Aims Research Journal Reference Format:
Osegi, N.E & Enyidah, P. (2016): An Improved Intelligent Agent for Mining Real-Time Databases Using Modified Cortical Learning
Algorithms. Advances in Multidisciplinary Research Journal. Vol. 2. No. 2, Issue 1 Pp 47-58. .

INTRODUCTION

Cortical Learning Algorithms (CLA) are typically a suite of algorithms developed to implement some
functionality of the mammalian neocortex in computer software. According to Numenta (Numenta, 2014),
HTM is the computational theory on which CLA framework is built. Thus, a detailed understanding of HTM
theory is important for any implementation of CLA. At the basic level, CLA is reduced to a cortical learning
microcircuit or a sequence of intelligent cortical learning microcircuits. In this paper we developed a
reduced version of CLA coined Reduced Cortical Learning Transphomers (rCLT) suitable for real-time
embedded learning database systems. We put forward a new model of Cortical Learning based on the
First-Last Rule (FLR) and the Frequent-Occurring Rules (FOR). Our primary objective here is to develop
a structured and object-oriented intelligent algorithm suitable for mining a real audio database.
The paper is organized as follows:

48

Vol. 2 No. 2, Issue 1, May 2016

In section II we briefly describe the HTM theory necessary for understanding the CLA-like algorithms. In
section III we present the underlying concept of rCLT including the definition of a concept map based on
two rule-concept sets. In section IV we experiment on a real-time dataset as a proof-of-concept and
present our results and discussions. We give our conclusions in section V.

2. HTM THEORY FOR CORTICAL LEARNING MICROCIRCUITS

Hierarchical Temporal Memory (HTM) is a computational theory of mammalian cortex that suggests the
sparse distributed hierarchical learning of the brain over time. The aspect of time is very important since
this guarantees that we are dealing with a living and dynamic being that is guaranteed to intelligently
learn sparse patterns of the input world over time. HTM uses Approximate Computing techniques which
tends to encourage nearest neighbour Associative Learning while keeping the learning objects (or
elements) at a bare minimum. This form of expectation maximization has deep Bayesian probabilistic
roots which is beyond the scope of this paper. The HTM theory tactically proposes four principles and four
functions. It also suggests what each layer or region does in a cortical circuit. We shall briefly examine
these principles, functions and proposals in this section. We shall also introduce the three core state-
machines in a typical CLA system in light of three key memory patterns.

2.1 The HTM Principles
The principles (learning principles) include the following:

• The Use of a Hierarchy

• The Use of Regions

• The Use of a Sparse-Distributed Representation

• The Use of specific timing constraints

The hierarchy constitute an arrangement of HTM Regions which are memory elements organized in a
columnar structure. The regions contain HTM cells which are actually random generative neurons with a
spiking profile. The magnitude of the connectedness of these HTM neurons or cells will determine the
direction of a winning or successful column. These regions represent the main units of memory and
prediction in HTM. The use of a sparse distributed structure ensures that at any point in time, the input to
a HTM cortical circuit is a sparse representation of a hypothetical or real world sensor input.

2,2 The HTM Functions
The HTM functions include the following:

• Learning

• Inference

• Prediction

• Behaviour

In the first stage (Spatial Pooling), learning is generically achieved through feed-forward pattern
sequencing via the sparse distributed data structure and standard Hebbian (or Hebbian-Hopfield) updates
using the notion of “Permanence” and “Boosting”. Permanence defines the level and connectedness of a
given sequence of HTM cells typically facilitated using synaptic points on the proximal or distal dendrites.
Boosting is used to support weaker cells in the learning process. This HTM cells will in turn determine
which set of overlapping columns will be used by the cortical circuit for online learning. This process is
referred to as inhibition and the successful column(s) called “winner columns”. Typically, the inputs to the
spatial pooler are recurrent – continual sensor signals. In the second stage we perform a temporal
pooling operation on the output stage of the spatial pooler. This is achieved using a predictive sequence
operation on HTM segments (group of cells) at time step, t. The predicted sequences can then be used
for making inference by matching novel or previously learnt inputs to the recognition or memory prediction
units. It is important to note that at each point of the learning and prediction process, the data is sparse
resulting in significant savings in memory in addition to higher representational efficiencies.

49

Vol. 2 No. 2, Issue 1, May 2016

2.3 Proposals for the HTM Cortical Layers or Regions
The HTM Layers include four key proposals. All layers are assumed to be feed-forward layers learning
sequences of sequences of data.

• V4- These are Layer 4 cells. When these layers are present in a cortical circuit, they use the
HTM-CLA to learn first-order predictions (FOP’s) or temporal transitions. They make
representations that are invariant to spatial transformation.

• V3- These are layer 3 cells. They are closest to HTM-CLA described in (Numenta, 2014). They
use the HTM-CLA to learn variable-order prediction (VOP) or temporal transitions. They form
stable representations that are propagated up the cortical hierarchy.

• V5- These are layer 5 cells. They learn VOP’s with timing. They also possess motor/gating ability
(see reticular formation).

• V2- These are layer 2 and layer 6 cells. Though no specific proposals are made, they are
assumed to learn some form of sequence memory

2.4 Meta-level Pattern Memory Description Framework
A meta-descriptive theory of HTM Regions which includes layers of cells at each cellular level will be
described in terms of three core processes (Hawkins et al 2010) based on the three state machines –
active state, learn state and predictive state (see Appendix III for state machine description). The meta-
level processes are as follows:

• Form a sparse distributed representation of the input (Spatial Pooling). Here we set learn state to
1 and proceed with a generative synthesis of active and inactive cells using the ideas proposed in
section B with the hope that these cells is probably an incarnation of the input SDR – a bayesian
belief propagation. This is the first condition for re-generative cortical learning.

• Form a representation of the SDR input in the context of previous SDR inputs (Spatio-Temporal
Pooling). This is a transition of the active states in stage 1 into meta-states temporal-active and
temporal-inactive. Learn state is still set to 1. Thus, the active states in stage 1 is transformed into
a meta-learning-state level in stage 2.

• Form a prediction of the SDR’s in the context of the current (most recent) SDR input. This is the
matching (or feedback) learning stage. Here, it is expected that learning has been achieved with
an invariant representative space. With learn state turned off i.e. set to 0, we make inferences
based on the most recent input to the cortical system ignoring prior inputs. This stage should give
rise to the memory-prediction framework ideas proposed in (Hawkins & Blakeslee, 2007)

3. REDUCED CORTICAL LEARNING TRANSPHOMER (rCLT)

The rCLT is a scaled down version of the CLA framework specifically targeted at embedded system
applications. It follows a systematic functional/object-oriented procedure that facilitates easy debugging
and refinements in software architecture. The ideas of rCLT is guided by the SDR theory in (Ahmad and
Hawkins, 2015) and by the Generative Models in (Osegi and Enyindah, 2015)

3.1 The rCLT Algorithm
The algorithm presumes that given a group or matrix of real world analogue sensor inputs, the sparse
distributed representation in a cortical circuit is a random function of the most frequently occurring
analogue inputs or the first-or-last occurring analogue inputs in the input sensor sequence.
Stated in Mathematical terms,

50

Vol. 2 No. 2, Issue 1, May 2016

),0(,

,,

,

)((

roUxandx

xandxx

where

xOrxOrxx

lastfirst

lastfirstf

lastfirstfsparse

∈

ℜ∈

>

 (1)

A typical rule procedure is outlined in Appendix I and Appendix II for the FLR and FOS rules respectively,
but is not intended to be limiting in this context. Source code implementations can be obtained from the
Matlab File Exchange Website (www.matlabcentral.com).

3.2 Spatial Pooling in rCLT
The spatial pooler algorithm forms a sparse distributed representation of the input sensing world. The
spatial pooler implements some important cortical functions which are vital to the smooth and reliable
operation of a cortical circuit. Spatial Pooling is implemented as follows:

Step. 1. Initialise all parameters and constants:

),(coromI

int: constraresizeK o

)((:1 lastfirstf xOrxOrxparametersrulelastfirstandfrequentk −

2.01.0:2 totypicallycriterionSparsityk −

thresholdpermanencedefaultK p :

)(int: scolumnwinningobtainingforspoatscorematchingdefaultK s

)(: scolumnwinningobtainingforscorematchingdefaultK score

rowsofnumberro :

columnsofnumberco :

Step. 2. Perform a first-order sparsity by resizing the input. This is typical when processing large images or audio signals
-where the data is large we use only a subset of the data at a particular instance of time. This is typical of most brain
sensory fields.

Step. 3. Max-out the inputs and build the partition function:

Max-out:

))max(max(max IoI = (2)

Partition:

oI

o

z
I

I
I ∀=)(

max

.
 (3)

Step. 4. Apply equation (1) to the partition function in step 3 to form the 2-nd order sparse representation (Binary SDRs).
Step. 5. Reshape the SDRs formed in step 4 to generate a single-dimensional columnar sensor input for online cortical

training

Ζ∈=

=

corocoroi

iIreshapei

product

productzzr

,{*

)1,,(
 (4)

Step. 6. Generate random columnar cellular SDRs constrained by Kp:

pproductg Kirandi

colssparseifor

>=

=

)1,(

_:1
 (5)

Step. 7. Form the Union Set : logical sum of output of step 6 including the influence of noise
Step. 8. Compute Overlap: logical sum of product of the Union set and the Input SDR
Step. 9. Extract winning columns and update permanences

51

Vol. 2 No. 2, Issue 1, May 2016

4. TEMPORAL POOLING IN RCLT

Temporal pooling follows a simple set of operations similar to the spatial pooler but with a timing
constraint i.e. the learning and predictive sequences are time based. The outputs from the Spatial Pooler
form the inputs to the temporal pooler in a feed-forward fashion.

5. EXPERIMENTAL DETAILS AND RESULTS

The experiments were performed on a standard PC with 2.0GHz processor and enough RAM/Hard-disk
Memory space.

The experiments were conducted in two parts:

Approach 1:
This approach uses a real-time streaming audio sample dataset to study the performance of the rCLT. A
single learning column is used for running the rCLT network. The percentage efficiencies using Approach
1 are given in Table 1. Figures 1 to 4, show the graphical matched SDR response of the rCLT cortical
circuit against the input SDR set. The influence of noise sparsity have not been studied.

Fig 1: Input SDR for Streaming Audio Dataset at time step, t = 4

52

Vol. 2 No. 2, Issue 1, May 2016

Fig 2: Matched SDR for Streaming Audio Dataset at time step, t = 4

Fig 3: Input SDR for Streaming Audio Dataset at time step, t = 5

53

Vol. 2 No. 2, Issue 1, May 2016

Fig 4: Matched SDR for Streaming Audio Dataset at time step, t = 5

Table 1: Percentage Accuracies for the Streaming Audio dataset at c = 1

Time step/Observation % Accuracy

1 99.5

2 99.5

3 99.5

4 93.0

5 98.0

Approach 2:
This approach uses a real-time streaming audio sample dataset to study the performance of the rCLT.
Here, 6 learning columns is used for running the rCLT network. The percentage efficiencies using
Approach 2 are given in Table 2. Figures 5 to 8, show the graphical matched SDR response of the rCLT
cortical circuit against the input SDR set. The influence of noise sparsity have not been studied.

54

Vol. 2 No. 2, Issue 1, May 2016

Fig 5: Input SDR for Streaming Audio Dataset at time step, t = 1

Fig6. Matched SDR for Streaming Audio Dataset at time step, t = 1

55

Vol. 2 No. 2, Issue 1, May 2016

Fig7. Input SDR for Streaming Audio Dataset at time step, t = 5

Fig 8: Matched SDR for Streaming Audio Dataset at time step, t = 5

56

Vol. 2 No. 2, Issue 1, May 2016

Table 2: Percentage Accuracies for the Streaming Audio dataset at c = 6

Time step/Observation % Accuracy

1 100

2 99.5

3 99

4 99.5

5 99.5

From the results, it is easy to see that efficiencies greater than 92% is achievable using rCLT irrespective
of the variation in input for only a single learning column. This can be greatly improved by adding more
columns or when the inputs are repeatable.

6. CONCLUSION

Cortical Learning Algorithms play a vital role in understanding how the mammalian neocortex operate but
is still limiting in terms of functional strength and computational power when compared to real human
cortex. In this paper, we have developed a novel intelligent agent framework based on a modified Cortical
Learning Algorithm for embedded real-time database systems. The developed framework in this paper
will provide a good starting point for developing structured object-oriented implementations of cortical
learning microcircuits in real-time embedded applications.

REFERENCES

1. Ahmad, S., & Hawkins, J. (2015). Properties of Sparse Distributed Representations and their
Application to Hierarchical Temporal Memory. arXiv preprint arXiv:1503.07469.

2. Hawkins, J., Ahmad, S., & Dubinsky, D. (2010). Hierarchical temporal memory including HTM
cortical learning algorithms. Techical report, Numenta, Inc, Palto Alto http://www. numenta.
com/htmoverview/education/HTM_CorticalLearningAlgorithms. Pdf

3. Hawkins, J., & Blakeslee, S. (2007). On intelligence. Macmillan.
4. Osegi, N. E., & Enyindah, P. (2015). Learning Representations from Deep Networks Using Mode

Synthesizers. arXiv preprint arXiv:1506.07545.
5. rCLTs: Reduced Cortical Learning Transphomers,

http://www.mathworks.com/matlabcentral/fileexchange/54713-reduced-cortical-learning-
transphomers

57

Vol. 2 No. 2, Issue 1, May 2016

Appendix I
FIRST-LAST (F-L) RULE ALGORITHM
Step. 1. Get Input
Step. 2. Form SDR
Step. 3. Generate Cells
Step. 4. For Each Column Insert into Segments
Step. 5. Get First Segment
Step. 6. Get Last Segment
Step. 7. Combine First and Last Segments to form F-L Synaptic Potentials
Step. 8. Use F-L Synaptic Potential for Input Matching
Step. 9. Store matched in memory to form memory-store
Step. 10. Get New Inputs
Step. 11. Use memory-store to form new predictions – against New Inputs

Goal: To prove the Intermediate Manifold Hypothesis (IMF) – stated here as the possibility that there exist
a high concentration of distributive information (i.e. the data generating distribution) at first and last point
of a data sequence (s). The first and last points are assumed to be of low dimensionality.

Appendix II

Frequently Occurring Segment (FOS) ALGORITHM
Step. 12. Get Input
Step. 13. Form SDR
Step. 14. Generate Cells
Step. 15. For each column Insert into Segments
Step. 16. Get Column with the most frequently occurring segments (FOS) – i.e. columns that give

the highest number of similarly occurring segments
Step. 17. Use the most FOS to form Synaptic Potentials
Step. 18. Use FOS Synaptic Potential for Input Matching
Step. 19. Store matched in memory to form memory-store
Step. 20. Get New Inputs
Step. 21. Use memory-store to form new predictions – against New Inputs

Goal: To validate the Mode Synthesizer Algorithm (MSA)

58

Vol. 2 No. 2, Issue 1, May 2016

Appendix III
HTM State Machines

s/n State Function

1 Active This represents the activity of cells that can participate in the

cortical learning phase. Mathematically, Active cells are cells that

have a state of 1 and we say the cell(s) have current feed-forward

input as well as an appropriate temporal context.

2 Learn State A state that stochastically determines which output cells are used

in learning. If set to 1, we say the cell(s) in the respective

column(s) are chosen as learning cells. The cells must also be in

active state.

3 Predictive State A state that determines which output cells are used in predicting

given the bottom-up build of the learning columns and past

temporal context. If set to 1 we say the cells are predicting feed-

forward input in the current or most recent temporal context.

