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ABSTRACT 
 
A high degree of linear dependency among several explanatory variables in a multiple regression causes 
multicollinearity, usually when the correlation coefficients among  explanatory variables is either very close to 1 or to -
1 then the problem  of multicollinearity arises. This problem inflates or overestimates the standard error of regression 
coefficients of multiple regression models, rendering the standard errors to be abnormally large, the larger the 
regression coefficient, the less likely it is that this coefficient will be statistically significant. This study is focused on 
investigating the diagnostic factors of multicollinearity in a multiple regression model. This paper used real data to 
check for multicollinearity via variance inflation factor (VIF), tolerance value, condition number, eigenvalue and 
examination of the correlation matrix. Based on the empirical analysis of the econometric data employed, we infer that 
variance inflation factor (VIF), tolerance value, examination of correlation matrix and the condition index are effective 
tools in detection of multicollinearity problem in a regression model. 
 
Keywords: Multicollinearity, Variance Inflation Factor, Tolerance Value, Correlation Matrix, Condition Number,  

     Eigenvalue. 
 
 
1. INTRODUCTION  
 
Multicollinearity in multiple regression models is a condition whereby there is high degree of correlation or dependency 
among several independent (explanatory) variables. This problem happens when the correlation coefficients among 
explanatory variables is either very close to 1 or to -1. Ranjit (2014) presented his opinion that the presence of 
multicollinearity can render the least-squares analysis of the regression model inadequate. Sometimes, multiple 
regression outcomes may look inconsistent. Though the overall p-value is very low, the individual p values are high. 
Hawkins (1983) explains the term multicollinearity as a situation in which there is an exact or nearly exact linear relation 
among two or more independent variables. The exact relation commonly arises due to errors or lack of understanding 
of the input variables.  
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There is no clear-cut threshold for evaluating multicollinearity of linear regression models. Computation of correlation 
coefficients of independent variables can be obtained. But high correlation coefficients do not necessarily imply 
multicollinearity. A judgment by checking related statistics can be made, such as tolerance value or variance inflation 
factor (VIF), Eigenvalue, and condition number. Belsley et al (1980). Asterou and Hall (2015) posited that if near linear 
dependency exists, the auxiliary regression will display a small equation standard error, a large R2 and statistically 
significant F-value. Jeeshim (2003) defines multicollinearity as a high degree of correlation (linear dependency) among 
several independent variables. It commonly occurs when a large number of independent variables are incorporated in 
a regression model. It is because some of them may measure the same concepts or phenomena. Freund and Littell 
(2000) identified Variance inflation factor (VIF) as just the reciprocal of a tolerance value, thus low tolerances 
correspond to high VIF.VIF shows how multicollinearity has increased the instability of the coefficient estimates.  
 
Greene (2000) identified that Multicollnearity has following the consequences.   

(i) Variance of the model and variances of coefficients are inflated. As a result, any inference is not reliable 
and the confidence interval becomes wide.  

(ii) Estimates remain BLUE, so does  coefficient of determination (𝑅 )  
 
2. DIAGNOSTIC FACTORS OF MULTICOLLINEARITY 
 
There is no definite measure for evaluating multicollinearity of linear regression models; however, judgement about 
Multicollinearity of regression models can be checked by using statistics, such as variance inflation factor (VIF), 
tolerance value, correlation matrix (correlation coefficient), condition number, and eigenvalue. 
 
2.1 Variance Inflation Factor And Tolerance Value. 
Farrar and Glauber(1967) proposed the Variance Inflation Factor (VIF) measures the inflation of the parameter 
estimates being computed for all explanatory variables in regression models. 
 
The VIF formula is as follows: Wooldridge (2000), 
 

Var(𝛽 ) =
( )

 ……………………2.1 

 
Where 
 𝑆 = ∑ (𝑋 − 𝑋 )  and 𝑅  is the unadjusted 𝑅   
 
Procedure: 
𝑋  is regressed against all the other explanatory variables in the model, that is, against a constant, 𝑋  , 𝑋 , ….,𝑋 , 
, 𝑋 , ….,𝑋 . Suppose there is no linear relation between 𝑋  and the other explanatory variables in the model. Then, 

𝑅  will be zero and the variance of 𝛽  will be   . 
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Dividing this into the above expression for Var(𝛽 ), we obtain the variance inflation factor and tolerance as 
 
VIF(𝛽 ) = 

( )
   ……………………2.2     

 
Tolerance (𝛽 ) =   = 1 − 𝑅   …………2.3 

 
As It is shown in 2.2 and 2.3 the higher VIF or the lower the tolerance index, the higher the variance of 𝛽  and the 
greater the chance of finding 𝛽  insignificant, which means that severe multicollinearity effects are present. Hence, 
these measures can be useful in identifying multicollinearity.  
 
The practice is to choose each right hand side variable (explanatory variable) as the dependent variable and regress 
it against a constant and the remaining explanatory variables. We will then obtain k–1 values for VIF. If any of them is 
high, then multicollinearity is indicated. Unfortunately, however, there is no theoretical way to say what the threshold 
value should be to judge that VIF is “high.” However, Marquardt and Snee (1975) indicate that if any of the VIFs exceeds 
5 or 10, it is an indication that the associated regression coefficients are poorly estimated because of multicollinearity. 
Specifically, if the overall F statistic is significant but the individual t statistics are all non significant, multicollinearity is 
present. 
 
2.2 Correlation Matrix of Input Variables. 
Reddy et al (2013) posited that a very simple measure of multicollinearity is inspection of the off-diagonal elements, if 
the regressors are nearly linearly dependent, then 𝑟  in 𝑋 𝑋 will be near unity. If there is high multicollinearity between 
any two predictor variables, then the correlation coefficient between these two variables will be near to unity. By using 
correlation matrix, we can identify the close relationships between the input variables and further investigate them to 
decide about including them in the final model. Generally, a correlation of more than 0.6 can be treated as variable that 
cause the multicollinearity problem. 
 
2.3 Condition Number and Eigenvalue 
Condition number is used as measure for detecting the existence of multicollinearity in regression models. This 
measure is based on the eigenvalues of the explanatory variable matrix, measuring the sensitivity of small estimators 
to small variations in the variances. Condition number can be computed using the formula below: Yong-Wei (2008) 
 

C.N =  ……………………2.31 

 
where 𝜆  is the largest eigen-value of the matrix  X′𝑋 
  𝜆  is the smallest eigen-value of the matrix  𝐗′𝑿 
 
Yong-Wei (2008) suggested that if CN is between 20 and 30 as an indicator for a high linear multicollinearity. In case 
of no multicollinearity all eigenvalues would be unity. Eigenvalues smaller or larger than unity would indicate presence 
of multicollinearity. 
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3. DATA ANALYSIS AND DISCUSSION OF RESULTS 
 
This study utilizes secondary data obtained from the website of Central Bank of Nigeria. The data consist of 
econometric data of Gross domestic product which represent the dependent variable(Y) and independent variables of 
exchange rate (Dollar) (𝑋 ), bureau d-change rate (BDC) (𝑋 ), Inflation (𝑋 ), Interbank Rate (𝑋 ), Unemployment 
(𝑋 ), Domestic crude Production(𝑋 ) from 2004-2017.The data obtained in this study will be processed using the 
statistical packages software, SPSS. 
 
 
SPSS OUTPUT 
 

Variables Entered/Removeda 
Model Variables Entered Variables Removed Method 

1 
Domestic crude production, 
Unemployment, Interbank rate, 
Inflation, BDC, Exchange rateb 

. Enter 

a. Dependent Variable: GDP 
b. All requested variables entered. 

 
ANOVAa 
Model Sum of Squares Df Mean Square F Sig. 

1 
Regression 3081202571.241 6 513533761.874 5.625 .020b 

Residual 639039937.480 7 91291419.640   
Total 3720242508.721 13    

a. Dependent Variable: GDP 
b. Predictors: (Constant), Domestic crude production, Unemployment, Interbank rate, Inflation, BDC, Exchange rate 

 
Coefficientsa 
Model Unstandardized 

Coefficients 
Standardized 
Coefficients 

T Sig. Collinearity 
Statistics 

B Std. Error Beta Tolerance VIF 

1 

(Constant) 27798.624 51770.157  .537 .608   

Exchange rate -65.201 394.126 -.238 -.165 .873 .012 84.328 
BDC 156.234 253.835 .831 .615 .558 .013 74.344 
Inflation -2221.239 1019.284 -.525 -2.179 .066 .423 2.366 
Interbank rate 641.933 1048.058 .177 .612 .560 .294 3.406 
Unemployment 686.050 590.273 .320 1.162 .283 .324 3.085 
Domestic crude 
production 

-12167.585 21389.242 -.167 -.569 .587 .283 3.532 

a. Dependent Variable: GDP 
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Correlations 

 Exchange rate BDC Inflation Interbank 
rate 

Unemployment Domestic 
crude 

production 

Exchange rate 

Pearson 
Correlation 

1 .991** .484 .782** .718** -.581* 

Sig. (2-
tailed) 

 
.000 .079 .001 .004 .029 

N 14 14 14 14 14 14 

BDC 

Pearson 
Correlation 

.991** 1 .503 .736** .711** -.608* 

Sig. (2-
tailed) 

.000 
 

.067 .003 .004 .021 

N 14 14 14 14 14 14 

Inflation 

Pearson 
Correlation 

.484 .503 1 .225 .375 -.689** 

Sig. (2-
tailed) 

.079 .067 
 

.440 .187 .006 

N 14 14 14 14 14 14 

Interbank rate 

Pearson 
Correlation 

.782** .736** .225 1 .543* -.335 

Sig. (2-
tailed) 

.001 .003 .440 
 

.045 .242 

N 14 14 14 14 14 14 

Unemployment 

Pearson 
Correlation 

.718** .711** .375 .543* 1 -.172 

Sig. (2-
tailed) 

.004 .004 .187 .045 
 

.557 

N 14 14 14 14 14 14 

Domestic crude 
production 

Pearson 
Correlation 

-.581* -.608* -.689** -.335 -.172 1 

Sig. (2-
tailed) 

.029 .021 .006 .242 .557 
 

N 14 14 14 14 14 14 
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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Collinearity Diagnosticsa 

Model Dimension Eigenvalue Condition 

Index 

Variance Proportions 

(Constant) Exchange 

rate 

BDC Inflation Interbank 

rate 

Unemployment Domestic 

crude 

production 

1 

1 6.668 1.000 .00 .00 .00 .00 .00 .00 .00 

2 .197 5.824 .00 .00 .00 .00 .02 .00 .00 

3 .085 8.875 .00 .00 .00 .30 .14 .00 .00 

4 .035 13.754 .00 .00 .01 .23 .54 .04 .00 

5 .014 22.209 .03 .00 .01 .01 .04 .69 .01 

6 .001 71.082 .96 .00 .01 .46 .00 .27 .97 

7 .001 88.326 .01 .99 .97 .00 .26 .00 .02 

a. Dependent Variable: GDP 

 
From the SPSS regression coefficient output above it is seen that the independent variable (Exchange rate) and (BDC 
rate) have high correlation coefficients and VIF, VIF more than 10 indicate presence of serious multicollinearity while 
Inflation rate, Inter-Bank rate, Unemployment rate and Domestic production(𝑋 ) has very low VIF. Though the model 
has serious multicollinearity, from the ANOVA output the model is adequate since p-value 0.003 is less than the level 
of significance (0.05) with high coefficient of determination 𝑅  = 0.950. 
 
BDC, Interbank and Unemployment and Exchange rate explanatory variables are very highly correlated (r

 
= 0.99, 0.78, 

0.72). Of course, the tolerances for these variables are therefore also very low. The collinearity diagnostic SPSS output 
does not explicitly reports the condition number but it reports the largest condition indices of 72.082 and88.326. This 
falls within our “rule of thumb” range for concern. The collinearity diagnostic SPSS output has all eigenvalues less than 
and greater than unity, which indicate presence of multicollinearity. 
 
It can been seen from SPSS regression coefficient output that the independent variables, exchange rate, BDC, 
interbank rate and unemployment are all insignificant with p-values less than 0.05 due to the high presence of 
multicollinearity that affected the ordinary least square estimates. Yet, the overall F is significant. All of these checks 
are notification of multicollinearity. A change of one or two of the explanatory variables causing problem could 
completely reverse the estimates of the effects. 
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Model Summary 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 .874a .764 .659 9881.82004 

a. Predictors: (Constant), Domestic crude production, Unemployment, Interbank rate, Inflation 

 
 
ANOVAa 

Model Sum of Squares Df Mean Square F Sig. 

1 

Regression 
2841389202.40

8 
4 710347300.602 7.274 .007b 

Residual 878853306.313 9 97650367.368   

Total 
3720242508.72

1 
13 

   

a. Dependent Variable: GDP 

b. Predictors: (Constant), Domestic crude production, Unemployment, Interbank rate, Inflation 

 
Coefficientsa 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. Collinearity Statistics 

B Std. Error Beta Tolerance VIF 

1 

(Constant) 63716.213 47213.938  1.350 .210   

Inflation -2406.043 1046.553 -.569 -2.299 .047 .429 2.331 

Interbank rate 1309.653 754.717 .361 1.735 .117 .606 1.651 

Unemployment 1301.684 457.826 .607 2.843 .019 .576 1.735 

Domestic crude 

production 

-

33008.931 
17677.025 -.454 -1.867 .095 .443 2.255 

a. Dependent Variable: GDP 
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From table ANOVA and Coefficient output above it is seen that when BDC and Exchange rate cases were eliminated 
from the model since they have very high VIF’s. The multiple regression model no longer exhibit multicollinrarity and 
the ordinary least square estimates is now precise with some of the independent variables, that is, Inflation rate, 
Unemployment rate and Domestic crude production significant since their respective p-values are less than (𝛼 =0.05) 
and the model remains adequate from the ANOVA table returning p-value less than (𝛼 =0.05), this implies that a 
change of one or two of the explanatory variables causing the problem could completely reverse the estimates of the 
effects. 
 
4. CONCLUSION 
 
Based on the empirical analysis of the econometric data we can infer that variance inflation factor (VIF), tolerance 
value, examination of correlation matrix and the condition index are effective tools in detection of multicollinearity 
problem in a regression model. When the presence of multicollinearity is severe in a multiple regression model then 
the ordinary least square estimators are imprecisely estimated. Multicollinearity problem undermines the statistical 
significance of an explanatory variable. It overestimate the standard error of regression coefficients of multiple 
regression, making the standard errors to be unusually large, the larger the regression coefficient, the less likely it is 
that corresponding coefficient(s) will be statistically significant.  
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APPENDIX 
 
Table 1: Econometric data of Nigeria 

Year GDP (Y) 
‘Trillion’(=N=) 

Exchang
e rate 
(Dollar) 
𝑋  

BDC (𝑋 ) Inflation 
(𝑋 ) 

Interbank  
rate (𝑋 ) 

Unemploymen
t 

𝑋  

Domestic 
crude 
Production
(𝑋 ) 
‘Billion’ 

200
4 
200
5 
200
6 
200
7 
200
8 
200
9 
201
0 
201
1 
201
2 
201
3 
201
4 
201
5 
201
6 
201
7 

4,725 
6,912.40 
8,487 
11,411.10 
14,572.20 
18,564.60 
20,657.30 
24,294.20 
24,794.20 
29,205.80 
44,725.10 
51,345.34 
50,123.34 
50,102.12 

 

132.5 
128.5 
126.4 
124 
115.5 
147 
148 
151 
154 
154.5 
154 
196 
305.18 
305.90 

140.69 
143.94 
129.82 

123.8 
118.1 

152.03 
153.13 
160.35 
159.32 
167.14 
175.85 

232.4 
415.36 
362.41 

 
 

15.38 
17.85 

8.38 
5.42 

11.53 
12.59 
13.76 
10.85 
12.24 

8.52 
7.18 
9.12 

18.34 
16.12 

 

6.45 
7.26 
7.38 
7.93 

11.86 
11.87 

4.02 
10.57 
13.94 
12.08 
11.67 
11.87 
15.67 
22.95 

 

25.6 
38 

32.3 
32.2 
32.1 
27.5 

39 
43.5 
42.7 
25.6 

38 
42.12 

48.6 
49.15 

 

2.03 
2.12 
2.43 
2.36 
2.2 
2.04 
2.05 
2.59 
2.27 
2.21 
2.11 
2.43 
1.69 
1.93 

 

Source: CBN Bulletin 2018 
 
 
 
 
 
 
 


