
Journal, Advances in Mathematical & Computational Sciences
 Vol. 10 No. 2, 2022

www.mathematics-computationaljournal.info

61

Performance Evaluation Of The Effect Of Implementation
Languages On The Sofware Complexity Of K- Means Algorithm

1Lala, O.G., 1Onamade, A.A., 1Oduwole, O.A., 1Sunday, P., 1Aroyehun, A.A. & 2Olabiyisi, S.O.
1Department of Computer Science, Adeleke University Ede

2Department of Computer Science, Ladoke Akintola University of Technology, Ogbomoso
E-mails: 1onamadeakintoye@gmail.com, 1olusegun.lala@adelekeuniversity.edu.ng;

2soolabiyisi@lautech.edu.

ABSTRACT

In the world of data mining, the k-means clustering algorithm is regarded as one of the most effective
and well-liked methods. Although the approach is widely used, it does have certain drawbacks, such
as issues with centroids' random initialization, which might result in unforeseen convergence.
Moreover, the number of clusters that must be determined in advance for this type of clustering
method is what determines the distinct cluster forms and outlier effects. The inability of the k-means
algorithm to accommodate different data formats is a basic issue. This work used Halstead Complexity
measure to find the software complexity of k- means algorithm. K-Means algorithm was written in C++,
C#, and Java programming language. The software complexity of C++, C#, and Java programming
language was evaluated using Halstead Complexity measure. The result obtained was compared in
order to discover the complexity of all the different implementation languages. Three different codes
of K-means algorithm were written in C++, C# and Java programming language. Halstead complexity
measure was used to evaluate the different implementation structures of programming languages for
comparative analysis of complexity measure. Comparatively, the results showed that Java
programming language performed better than C++ and C# in vocabulary of program, estimated
program level, effort to generate program and programming time. In this work, it was discovered that
Java has the smallest elementary mental discrimination time to construct a program which is 15.426
seconds when compare to the others. Key information about software testability, dependability, and
maintainability may be predicted using complexity measurements from computerized source code
assessment.

Keywords: Clustering Algorithm, Complexity, Convergence, Source Code, Software, Vocabulary

Lala, O.G., Onamade, A.A., Oduwole, O.A., Sunday, P., Aroyehun, A.A. & Olabiyisi, S.O. (2022): Performance Evaluation Of The Effect Of
Implementation Languages On The Sofware Complexity Of K- Means Algorithm. Journal of Advances in Mathematical & Computational
Sciences. Vol. 9, No. 2. Pp 61-74. DOI: dx.doi.org/10.22624/AIMS/MATHS/V10N2P6
Available online at www.isteams.net/mathematics-computationaljournal.

Journal of Advances in Mathematical & Computational Sciences
An International Pan-African Multidisciplinary Journal of the SMART Research Group

International Centre for IT & Development (ICITD) USA
© Creative Research Publishers

Available online at https://www.isteams.net/ mathematics-computationaljournal.info
CrossREF Member Listing - https://www.crossref.org/06members/50go-live.html

Journal, Advances in Mathematical & Computational Sciences
 Vol. 10 No. 2, 2022

www.mathematics-computationaljournal.info

62

1. INTRODUCTION

The attribute or state of being complicated is called complexity, according to Ricardo (2014). To
determine what it entails for a program to be complicated is the first obstacle to overcome when trying
to comprehend software complexity. When anything has numerous pieces and those parts interact
with one another in many ways, a higher level of emergence than the sum of the parts results, this is
referred to as something being complex. The only area in which scholars concur is that there is no
universally accepted definition of what constitutes "complexity." But it is feasible to characterize what
is complicated (Ricardo, 2014). The basic aim of complex systems theory is the investigation of
complex relationships at diverse scales. According to Basili (1980), complexity is a measurement of
the resources used by a system in interaction with a piece of software to carry out a certain activity.
The runtime and storage needed to complete the computation can be used to quantify complexity
when the interacting system is a computer. If the interacting system is a developer, complexity is
determined by how challenging it is to carry out activities like coding, debugging, testing, or software
modification.

The interplay between a program and a programmer operating on the programming chores is
sometimes referred to as software complexity (Basili, 1980). Software development entails building a
software system based on specifications. Due to the complexity of requirements, software system
projects frequently change. In order to better understand user needs or get rid of mistakes, software
projects are altered or adjusted. Consequently, it is said that software systems are complicated (Arpna,
et al., 2012; Edward et al., 2007). The process of creating and updating software systems is called a
software life cycle. Every activity and product required to create a software application is included in
the software life cycle. The intricacy of software systems makes life cycle models useful for helping
developers manage it. To make software development processes more noticeable and controllable,
life cycle models reveal these processes and their dependencies (Bruegge et al., 2012); Bruegge et
al., 2014; Bruegge and Allen, 2010; Charles et al., 2006).

As a result, achieving a high level of equality is challenging. Since it was understood that software
development is a difficult process, software metrics have been a crucial tool. Software quality has
been a growing need for decades as a result of its complexity, and several meanings have appeared
for software quality during the course of the development of software. Several quality characteristics,
including accuracy, dependability, effectiveness, efficiency, integrity, usefulness, maintainability,
testability, portability, reusability, flexibility, and interoperability, should be present in a software
product (Chin-Yu et al., 2012; Norma and Biemman, 2014). Software complexity is defined as "the
extent to which a system or component has a design or implementation that is difficult to comprehend
and confirm" (IEEE Std, 1998), meaning that the complexity of a piece of code is directly related to
how easy it is to understand. Complexity is caused by all the elements that make a program challenging
to comprehend. Software complexity also serves as a gauge for the time and effort required to create,
comprehend, and maintain a piece of code; the more complicated the code, the longer those times
and efforts will take (Kakesh and Gurvinder 2011).

Results based on actual items demonstrate a relationship between the system's complexity and the
amount of failures. A software system's complexity is a measurement of the resources it uses when
its component elements work together to complete a job. Complexity is connected to the amount of

Journal, Advances in Mathematical & Computational Sciences
 Vol. 10 No. 2, 2022

www.mathematics-computationaljournal.info

63

time and hardware capabilities needed to complete the job if the engaging entity is a computer. The
complexity of an interaction depends on how challenging it is to code, test, and alter the software,
assuming the interacting element is a developer (Edward 2014). It is considered that a greater level
of code comprehension is necessary for creating and altering software systems. Higher
comprehensibility means a lower level of program complexity, which makes testing simpler. Given that
complexity is a term with several interpretations, complexity and program length have a high
correlation. Maintainability is the most important aspect of software quality (Jyoti and Rajder 2017).
The code should be clear to developers so they can maintain a software system effectively. In a
nutshell, it is crucial to reduce complexity in order to produce high quality. Program metrics are
employed to address software complexity.

The quantity of resources used during computing is guaranteed by a dynamic complexity measure,
whereas a static complexity measure quantifies the size or structural complexity of an algorithm
description, such as the number of nesting do loops Nouh, et al (2017). Metrics are complexity
indicators since they highlight a number of flaws in a complicated software system. Software metrics
are therefore essential to the software development process since they allow for the estimation of
quality. A number of software attributes are quantified using metrics for software complexity. Without
employing any measurements, it is often very difficult to produce high-quality programs or to
streamline the development process. Multiple metrics exist, each focused on a different complexity
component (http://www.stsc,hill.af.mil/resources/tech docs/gsam3). To gauge the quality of its
software systems, prominent corporations like Hewlett-Packard, AT&T, and Nokia utilize a variety of
criteria (Sommerville, 2004).

Software metrics are one type of measuring system that may be used to enhance software
development procedures and software outcomes (Norma, 2014). They offer numerical data on the
improvement and verification of software development procedures (Ignaaro et al., 2015). You cannot
manage what you cannot measure, according to (DeMarco, 1986), which is why software metrics are
used. Measurement is necessary to keep track of and enhance software quality. Software complexity
is described by McCabe et al. as "one branch of program metrics that is centered on precise
measurement of software properties, as opposed to indirect software measurements such as project
milestone status and reported system faults" (McCable and Waston, 2010; Olabiyisi, et al., 2013).
Metrics fall under the control and predictor categories. Software processes are the subject of control
metrics, whereas software products are the subject of predictive metrics. Estimates for control metrics
include effort, time, and faults. Conversely, predictor metrics evaluate the amount of structures and
characteristics in a code (Bernard2012).

2. METHODOLOGY

The Halstead complexity metric is used in this research to examine the software complexity of the K-
Means algorithm implemented in three distinct programming languages. The following approaches will
apply: K- Means algorithm was written in C++, C# and Java programming languages, evaluate of the
software complexity of the different K-Means algorithm programming languages was carried out as
well as the comparison of the three programming languages under consideration.

Journal, Advances in Mathematical & Computational Sciences
 Vol. 10 No. 2, 2022

www.mathematics-computationaljournal.info

64

3. MOTIVATION OF STUDY

Comparing numerous criteria including effort, time, maintenance, cost, dependability, and
comprehension is a common practice in software metrics. Metrics are essential for a number of
reasons, including evaluating a program's readability, testability, maintainability, and development
procedures. One of the most potent and well-liked data mining methods in the scientific community is
the K-means clustering algorithm. Nevertheless, despite its widespread use, the technique has certain
drawbacks, such as issues with centroids' random initialization, which causes unanticipated
convergence. In addition, the user must first choose k (the number of nodes). Only numerical data may
be handled by K-means. K-means makes the assumption that each cluster has about equal quantities
of observations and that we are dealing with spherical clusters. The inability of the k-means algorithm
to accommodate different data formats is a basic issue. Any clustering study must always provide the
value of k, which is dependent on the K-means technique. Different k numbers for clustering will
eventually provide various outcomes.

4. SOFTWARE COMPLEXITY OF C++ USING HALSTEAD COMPLEXITY MEASURE

The software complexity measure is as shown in Table 1. It contains the list of operators and operands
for C++

Table 1: The list of operators and operands for C++ .

Operators Occurrences
n1 N1
= 17
++ 8
< 11
+ 1
- 1
== 1
abs() 2

Operands Occurrences
n2 N2
3 1
100000 1
10 1
1 4
0 10
25 3
100 4
K 5
I 30
J 15
numbers 7

Journal, Advances in Mathematical & Computational Sciences
 Vol. 10 No. 2, 2022

www.mathematics-computationaljournal.info

65

Operators Occurrences
kvals[] 3
prevKvals[] 1
steps 3
addition[][] 5
count 1
groups[][] 2
Min 3
groupnum 3
value 2
Sum 1
Ok 2
nums[] 5
n2 = 24 N2 = 112

This is the corresponding calculation for C++ :

N=N1+N2=153 in this case when N1=41 and N2=112.

Program vocabulary: n1+n2=7+24=31

Volume V = N* log2 n
 =153*log2 31=757 bits.

The estimated program length N of the program
 = 7 log2 7+24 log2 24
 = 7*2.81+24*4.58
 = 19.67+109.92=129.59

Estimated program level

L= 2/n1*n2/N2=2/7*24/112= 0.061

V*= V*L=757*0.061=46.177

E= V/L= D*V

=757/0.061=12409.83

Therefore, 12409.83 is the elementary mental discrimination are required to construct the program.
T= E/B= 12409.83/31= 400.317 seconds = 7minutes

Journal, Advances in Mathematical & Computational Sciences
 Vol. 10 No. 2, 2022

www.mathematics-computationaljournal.info

66

5. SOFTWARE COMPLEXITY OF C# USING HALSTEAD COMPLEXITY MEASURE

Table 2 provides the software complexity measurement. It includes a list of C #operators and
operands.

Table 2: The list of operators and operands for C#

Operators Occurrences
n1 N1
= 9
< 2
++ 1
* 4
/ 1
+ 2

Operands Occurrences
n2 N2
seed.Count 1
1 1
6 1
R 1
X 3
Y 3
I 3
Operators Occurrences
rand 4
new Random(); 1
max_r 3
num_points 2
seed_num 3
Theta 3
Seeds[] 2
N2 = 14 31

This is the corresponding calculation for C# :
The length of the program is N=N1+N2=50 where N1=19 and N2=31.
N1+N2=6+14=20 is the program's vocabulary
Volume V = N* log2 n
 =50*log2 20=216.09 bits.

The estimated program length N of the program
 = 6 log2 6+14 log2 14
 = 6*2.584+14*3.807
 = 15.504+53.298=68.802

Journal, Advances in Mathematical & Computational Sciences
 Vol. 10 No. 2, 2022

www.mathematics-computationaljournal.info

67

Estimated program level
L= 2/n1*n2/N2=2/6*14/31= 0.150
V*= V*L=216.09*0.150=0.324
E= V/L= D*V
=216.09/0.150=1440.6

Therefore, 1440.6 elementary mental discrimination are required to construct the program.
T= E/B= 1440.6/20=72.03 seconds = 2minutes

6. SOFTWARE COMPLEXITY OF JAVA USING HALSTEAD COMPLEXITY MEASURE

Table 2 displays the software complexity metric. It includes a list of the Java operators and operands.
Table 3: The list of operators and operands for Java

Operators Occurrences
n1 N1
< 7
+ 1
= 11
{ 4
} 4
++ 1
; 10
, 9
Operators Occurrences
. 7
: 1
// 1
n1 = 11 N1 = 56

Operands Occurrences
n2 N2
Double sum 1
Centroid 1
Record 3
Distanc 4
entry se 1
get value() 1
return s 1
1000 1

n2 = 8 N2 = 13

Journal, Advances in Mathematical & Computational Sciences
 Vol. 10 No. 2, 2022

www.mathematics-computationaljournal.info

68

This is the corresponding calculation for Java:
N1 is 56 here, while N2 is 13. N=N1+N2=69 is the program length.
Program vocabulary: n1 + n2 = 11 + 8 = 19

Volume V = N* log2 n
 V=69*log2 19= 293.10 bits.

The estimated program length N of the program
 = 11 log2 11+8 log2 8
 =11*3.4594+8*3
 = 38.0534+24=62.0534

Estimated program level
L= 2/n1*n2/N2 = 2/11*8/13= 0.01
V*= V*L=293.10*0.01=2.931
E= V/L= D*V
=293.10/0.01=293.1

Therefore, 293.1 elementary mental discrimination are required to construct the program.
T= E/B= 293.1/19=15.426 seconds = 1minute

7. RESULTS AND DISCUSSION

Having evaluated the software complexity of K- means algorithm using Halstead complexity measure,
three (3) different codes of K-means algorithm written in C++, C# and Java programming language
were analyzed. Halstead complexity measure was used to evaluate different implementation
structures of programming languages for comparative analysis of complexity measure. Halstead
Complexity Measure written in C++ is depicted in Table 4 whereas Halstead Complexity Measure
written in C# is depicted in Table 5 and Table 6 shows the Complexity of Halstead Complexity Measure
written in Java and Table 4.4: The Complexity Comparative of Halstead Complexity Measure written in
C++, C# and Java.

Table 4: The Complexity of Halstead Complexity Measure written in C++

Complexity Values
The program length 153
Vocabulary of program 31
Volume of program 757
Estimated program length 129.59
program level 0. 061
Effort to generate program 12409.83
Programming Time 400.317

Journal, Advances in Mathematical & Computational Sciences
 Vol. 10 No. 2, 2022

www.mathematics-computationaljournal.info

69

Table 5: The Complexity of Halstead Complexity Measure written in C#
Complexity Values

The program length 50

Vocabulary of program 20

Volume of program 216.09

Estimated program length 68.802

Estimated program level 0.150

Effort to generate program 1440.6

Programming Time 72.03

Table 6: The Complexity of Halstead Complexity Measure written in Java

Complexity Values

The program length 69

Vocabulary of program 19

Volume of program 293.10

Estimated program length 62.0534

Estimated program level 0.01

Effort to generate program 293.1

Programming Time 15.426

Table 7: The Complexity Comparative Table of Halstead Complexity Measure written in C++, C# and
Java.

Complexity C++ C# Java

The program length 153 50 69

Vocabulary of program 31 20 19

Volume of program 757 216.09 293.10

Estimated program length 129.59 68.802 62.0534

Estimated program level 0. 061 0.150 0.01

Effort to generate program 12409.83 1440.6 293.1

Programming Time 400.317 72.03 15.426

Journal, Advances in Mathematical & Computational Sciences
 Vol. 10 No. 2, 2022

www.mathematics-computationaljournal.info

70

8. RECOMMENDATION

This research compares the difficulty of software developed in C++, C#, and Java using the Halstead
complexity measure and the K-Means technique. It is recommended that Java programming language
gives the smallest elementary mental discrimination time required to construct the program.

9. CONCLUSION

Numerous software attributes are quantified using software complexity measures. The automated
analysis of the source code may be used to forecast important information about the software systems'
testability, reliability, and maintainability using complexity metrics. It was found that java has the
smallest elementary mental discrimination time to construct a program which is 15.426 seconds,
compare to the others. While C++ has the largest or complex elementary mental discrimination time
to construct a program compare to the other programming languages which is 400.317 seconds.

Journal, Advances in Mathematical & Computational Sciences
 Vol. 10 No. 2, 2022

www.mathematics-computationaljournal.info

71

REFERENCES

1. Ricardo, A. (2014) A Unified Complexity Theory pp.12 DOI:10.13140/2.1.2072.8963.
2. Amit, J. and Kumar R. (2015): A New Cognitive Approach to Measure the Complexity of

Software. International Journal of Software Engineering and its Applications Volume 8, No. 7
pp. 185

3. Aprna, T., Dharmender S., & Arun, K. (2012): Software Change Complexity: A New Dimension
for Analyzing Requested Change: IJCA proceeding on International Conference on Recent
Trends in Information Technology and Computer Science 2012.

4. Basei, D., and Mistra, S. (2009): Measuring and Evaluation a Design Complexity Metric for XML
5. Boehm, B. (1978); Characteristics of software quality, I of TRW Series on Software Technology,

North-Holland, Amsterdam Holland.
6. Briand, L., Emam, K. E., & Morasca, S. (1995): Theoretical and Empirical Validation of Software

Metrics. International Software Engineering Research Network Technical Report ISERN-95-03.
7. Chin-Yu, H., Hareton, L., & Osamu, M. (2012): Software Quality Assurance Methodologies and

Techniques.
8. Chis, F. (2008)CiteSeerX citation query". CiteSeerX: Introduction to Algorithms-The College of

Information Sciences and Technology at Penn State.
http://citeseerx.ist.psu.edu/showciting?cid-1910. Retrieved 2009-09-01.

9. DeMarco, T. (1986): Controlling Software Projects, Yourdon Press, New York, 1986.
10. Donald K.. (2003): The Art of Computer Programming (second edition), 3:418.
11. David, A., Bodo, M,, & Roglin, H. (2009) k-means has polynomial smoothed complexity. In

Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium on, pages
405–414. IEEE, 2009.

12. Eric, O., Michael, O., Francis, E., & Samuel, E. (2021) Comprehensive Review of K-Means
13. Clustering Algorithms. http://dx.doi.org/10.31695/IJASRE.2021.34050
14. Fenton, N.,and Pfleeger, S. L. (1997): "Software Metrics - A Rigorous and Practical Approach",

2nd Edition Revised ed. Boston: PWS Publishing.
15. Fischer, S. R.. (2003): A history of language, Reaktion Books, ISBN 186189080X: 205
16. Francalanci, C. and Merlo, F. (2010): The Impact of Complexity on Software Design Quality and

Costs: An Explanatory Empirical Analysis of Open Source Applications.
17. Halstead, M. H. (1977): Elements of Software Science, Operating and Programming Systems

Series, Elservier Computer Science Library North Holland N. Y. Elsevier North-Holland, Inc.
ISBN 0-444-00205-7.

18. Horowitz, E. and Sahni, J. (1978): Fundamental of Computer Algorithms, Computer Science
Press, Inc, Maryland, U.S.A.

19. H. Chen, “Comparative Study of C++ C# and Java Programming Languages”, Vaasan
Ammattikorakeakoulu Vasa Yrkeshogskola university of applied sciences Information
Technology, 2010.

20. Nouh, A. (2017) (IJASCA) International Journal of Advanced Computer Science and Application
Volume 8, No. 8, 2017.

Journal, Advances in Mathematical & Computational Sciences
 Vol. 10 No. 2, 2022

www.mathematics-computationaljournal.info

72

21. Olabiyisi S. O. Adetunji A. B. and Olusi T. R. (2013): Using Software Requirement Specification
as Complexity Metrics for Multi-Paradigm Programming Languages International Journal of
Emerging Technology and Advanced Engineering Website: www.ijetac.com (ISSN 2250-2459,
ISO 9001:2008 Certified Journal, Volume 3, Issue 3, March 2013.)

22. Schneidewind, N. F. (1992): Methodology for Validating Software Metrics, IEEE Transactions
on Software Engineering, 18:410-422.

23. Steven W. Smith (2011): Execution Speed: Programming Tips Copyright © by California
Technical Publishing

24. Steve, K. (2013): Complexity Metrics and Difference Analysis for Better Application
Management Pg 1-33 Bill Hewlett, Hewlett-Packard.

25. Sudhir, S., Nasib, S. (2013) Analysis and Study of K-Means Clustering Algorithm. Gill Deptt of
Computer Science & Applications M. D. University, Rohtak, Haryana. International journal of
engineering research and technology (IJERT)

26. Tian. J., Zelokowitch, M.V (1995): Complexity Measure Evaluation and Selection, IEEE
Transactions on Software Engineering 21(8): 641-650.

27. TOBЕ Software (2010): The Coding Standards Company. Programming Community
28. Index.www.stumbleupon.com/url/...tiobe.../index.../tpci_definition.h... – Coched
29. Veenendaal, E. V., McMullan, J. (1997): Achieving Software Product Quality, Den Bosch, UTN

Publishers, Amsterdam, the Netherlands.
30. Weyuker, E. J. (1988): Evaluating Software Measures, IEEE Transaction of Software

Engineering, 14:1357-1365.
31. Yahya, T, Mohammed, A., Bassam A. (2014): The Correlation among Software Complexity

Metrics with Case Study: International Journal of advanced Computer Research (ISSN (print):
2249-7277 ISSN (online:7970) Volume 4, No. 2 Issue 15 June 2014.

32. Zuse, H. (1991): Software Complexity: Measures and Methods: 605, 498 figures. Berlin, New
York: DeGruyter.

33. Zuse, H. “Software complexity: measures and methods. “ ,Vol. 4. Walter de Gruyter GmbH &
Co KG, 2019.

