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ABSTRACT   
 

The wastewater treatment process involves multiple stages; physical, chemical, and biological 
designed to remove contaminants such as organic matter, nutrients, pathogens, and heavy metals. 
Integrating artificial intelligence, statistical modeling, and optimization algorithms enhances 
prediction and control mechanisms, leading to more sustainable and cost-effective wastewater 
management solutions. Previous studies optimized multiple responses (turbidity, total suspended 
solids (TSS), biochemical oxygen demand (BOD), and chemical oxygen demand (COD)) using two 
operational factors (pH and coagulant dosage) at low and high levels (-1, +1) within a quadratic 
regression model (QM). However, these efforts were limited by factor selection, narrow variable 
bandwidths, and the chosen regression model, resulting in insufficient data fitting. This paper 
introduces an additional critical factor and expands the factor levels to five (-α, -1, 0, 1, +α) to 
enhance data fitting and optimize responses based on process requirements. An adaptive regression 
model is applied to improve goodness-of-fit statistics, increase dispersion from the zero-residual line, 
and enhance optimization outcomes. Comparative analysis, including 3D surface plots, 
demonstrates that the local linear regression model  with variable bandwidths outperformed the QM 
model in design efficiency, delivering superior goodness-of-fit, reduced residual errors, and better 
optimization results, with an overall desirability of 100% compared to 95.50% for QM using Cucumis 
Melo as a natural coagulant. 
 
Keywords: Local linear regression model, Cucumis Melo, Turbidity, Total Suspended Solids,  

     Biochemical Oxygen Demand, Chemical oxygen demand. 
 
 
 

1. INTRODUCTION 
 

Sewage wastewater treatment is an essential process that ensures the safe disposal or reuse of 
wastewater from households, industries, and commercial establishments. With the rapid expansion 
of urbanization and industrialization, the volume of wastewater generated has grown substantially, 
posing significant risks to the environment and public health.  
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Effective sewage treatment is crucial to prevent water pollution, safeguard aquatic ecosystems, and 
promote public well-being (Yang et al., 2023). The wastewater treatment process consists of multiple 
stages; physical, chemical, and biological designed to remove contaminants such as organic matter, 
nutrients, pathogens, and heavy metals. The primary objective is to reduce pollutants to levels that 
comply with environmental regulations before safely discharging treated water into natural water 
bodies or reusing it for irrigation, industrial applications, or even potable purposes (Joaquin and 
Nirmala, (2019); Joaquin et al., (2020)). 
 
Unprocessed surface water presents risks to both human health and the environment. Therefore, 
choosing an effective wastewater treatment method is crucial to safeguarding public well-being and 
community safety while optimizing efficiency and minimizing costs (Sivaranjani and Rakshit (2017). 
Advancements in wastewater treatment technologies, including membrane filtration, advanced 
oxidation processes, and genetic optimization techniques, have significantly enhanced the efficiency 
and effectiveness of treatment systems. Integrating artificial intelligence, statistical modeling, and 
optimization algorithms further improves prediction and control mechanisms, resulting in more 
sustainable and cost-effective wastewater management solutions. With the growing demand for 
clean water and increasing environmental concerns, ongoing research and innovation in sewage 
wastewater treatment are essential for ensuring long-term water sustainability.   
 
Response Surface Methodology (RSM) is suitable for optimizing the response variable  based on 
multiple explanatory variables. ( ) which can be modeled as: 
  

                       (1) 
 
where  is the error term and assumed to have a normal distribution with mean zero and 
variance . The surface represented by   is called a response surface Wan and 
Birch (2011). 
 
The actual response function  is unknown and must be estimated. By applying Response Surface 
Methodology (RSM), we aim to determine the functional relationship between the response  and 
the associated explanatory variables ( ). 
 
The traditional approach to modeling the relationship between the  explanatory variables and the 

 response assumes that the fundamental functional form can be effectively expressed in a 
parametric manner. A parametric regression model may be more advantageous if the user can 
accurately determine an appropriate parametric form for the data. 
 
Thus, the general parametric regression model, expressed in matrix notation, can be written as: 
 
             (2) 
 
where  is a vector of response,  is the OLS model matrix,  is the unknown parameter 
vector and  is the vector of error term assumed to be normally distributed with homoscedastic 
property. 
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In the literature the Central Composite Design (CCD) and Box-Behnken Design (BBD) are two 
statistical experimental designs used in Response Surface Methodology (RSM). In this study, CCD 
was chosen to determine the optimal region for factors influencing the performance of the 
coagulation-flocculation process due to its efficiency. 
 
The two key operating variables in this study were coagulant dosage and . The coded values for 

 ( ) and coagulant dosage ( ) were defined at specific levels:  (-1 ↔ 5.00) as low 
and (+1 ↔ 7.00) as high, while coagulant dosage (-1 ↔ 50.00) was set as low and (+1 ↔ 150.00) 
as high. The response factors analyzed included the percentage reduction in turbidity, TSS, BOD, and 
COD for Cucumis Melo (Joaquin et al., (2020)). 
.  
The existing literature, the second-order regression model (quadratic regression model) were used to 
fit the data for optimal settings of the two factors  (A) and coagulant dosage (B). Hence, the 
quadratic regression model is given as: 
 
The Quadratic model is given as:      
 
                      (3)   
 
which can be written as: 
 

 
 
For which  are the explanatory variables;  is a constant coefficient; the varying 
coefficients  and  are the coefficients of linear, quadratic and interaction terms 
respectively (Joaquin et al., (2020)) 
 
The usual method for estimating the parameter vector in Equation (2) is usually based on the 
Method of OLS. The parameter vector estimates  in (2) is given as: 
 

                 (5) 
 
The estimated responses for the location can be written as : 
 

    (6) 
 
where is the  row of matrix  vector, (Carley et al., (2004); Ramakrishnan 
and Arumugam (2011)). 
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2. MATERIALS AND METHODS 
 
As specified in the literature, the two operating factors are  ( ) and coagulant dosage 
( ) with the multi-response variables; Turbidity, Total Suspended Solids (TSS), Biochemical 
Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) reduction.  The goal is to obtain an 
optimum setting of the factors that would simultaneously maximize the multi-response factors 
(Joaquin et al., (2020)). The factors used by Joaquin et al. (2020) were insufficient for maximizing 
the optimal settings of the multi-response problem. In this study, an essential factor, temperature 
(°C), was introduced to enhance the sequence of factors, ensuring a more comprehensive 
maximization of the multi-response problem. 
 
The rationale behind the local linear regression model lies in its flexibility, allowing it to effectively 
address boundary bias issues without being constrained to a user-specified data form (Gramato and 
Calado (2014); Eguasa and Eguasa (2022); Eguasa and Eguasa (2023)). In the literature, the 
second-order regression model was used. However, in this paper, we apply an adaptive bandwidth 
for local linear regression ( ) to smooth the data based on location. 
 
The Local Linear Regression (LLR) Model 
 
When a researcher has limited information or only partial knowledge of a model's functional form, a 
nonparametric regression model serves as the most suitable alternative. In such scenarios, the Local 
Linear Regression (LLR) model is particularly relevant. LLR, a weighted adaptation of the least 
squares method derived from first-order Local Polynomial Regression, offers a key advantage over 
kernel regression by effectively reducing bias, especially at the boundaries of the explanatory 
variables (Ruppert and Wand (1994); Walker et al., (2002); Eguasa and Eguasa (2023).   
    
The LLR model is obtained from ordinary least squares theory. The LLR estimator  of  is given 
as: 

                  (7) 
 
where ,  is the  row of the LLR model matrix,  given as:   
 

                                        (8)       

 
We define W, an  diagonal matrix of kernel weights for estimating the response as:  
 

 , .                     (9) 

 
(Eguasa and Eguasa (2023)). 
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,…, )  for each . 
 
We can rewrite Equation (7) in terms of hat matrix as: 

,                                  (10) 
 
where the  matrix,  is the LLR hat matrix written as: 
 

                                    (11) 

 
The limitation of the LLR model is its high bias in regions with curvature, as its model matrix setup 
does not include quadratic terms (He et al., (2009)).   
 
Adaptive Bandwidths 
We introduced data-driven locally adaptive bandwidths as given in Eguasa et al. (2022):   

                             (12) 
where, . 
 
3. EXPERIMENTAL DESIGN 
 
In a Response Surface Methodology (RSM) application, multiple factors are typically involved, making 
the selection of appropriate levels for explanatory variables critical, as it directly affects the model's 
accuracy. The Experimental Design phase facilitates the creation of an effective design that 
accurately estimates the relationship between the response and one or more factors, with the 
Central Composite Design (CCD) being employed. 
 
In CCD, the number of experimental runs is determined using the formula   All factors 
are evaluated at five levels:  where  represents the full factorial design, 2  
denotes the axial (star) points positioned at a distance  from the center point, and  is the 
number of center points. In this study,  (the number of factors used), and , resulting in a 
total of 13 experimental runs for data collection (Eguasa and Eguasa, 2023). 
 
 Accordingly, the factors and their corresponding coded levels, as presented in the literature, are 
shown in Table 1 below: 
 
Table 1:  Coded stages and range for the design of experiments (Joaquin et al., (2020)) 
Variables Factors or Input parameters -1(Low) +1(High) 

   5 7 
coagulant dosage (mg/L)  50 150 
 
 
 



Vol. 13. No. 1, 2025 Series 

 
 
 
 
 
 
 
 

39 
 

Table 2: Experimental design (CCD) for Turbidity, TSS, BOD and COD using Cucumis Melo            
               coagulant (Joaquin et al., (2020)) 

Exptal 
Run 

pH 
 

Dosage 
 ( ) 

 

Turbidity 
 

TSS 
 

       BOD 
 

 
      COD 

 

1 6 100 37.6 87.7 95.5 71.4 

2 5 100 37.6 92.2 97.7 71.4 

3 6 50 96.6 86.7 76.1 10 

4 6 100 37.6 87.7 95.5 71.4 

5 6 150 35.6 76.7 95.5 78.6 

6 7 150 40 77.2 88.1 71.4 

7 5 50 95.5 93.3 86.4 14.3 

8 7 100 34.1 87.7 85.2 71.4 

9 6 100 37.6 87.7 95.5 71.4 

10 7 50 92.8 85.5 50 34.3 

11 6 100 37.6 87.7 95.5 71.4 

12 6 100 37.6 87.7 95.5 71.4 

13 5 150 36.5 79.5 96.6 81.4 

 
In Table 3, the inclusion of temperature (°C) as a factor, along with the star point (±α), significantly 
enhances the study’s design. This addition improves the sequencing of factors, providing a more 
comprehensive approach to optimizing the multi-response problem. 
 
Table 3:  Coded stages and range for the design of experiments for Cucumis Melo 
Variables Factors  -1.682(-

 
-1(Low) 0(Medium) +1(High) +1.682(  

   3 5 0 7 9 
Temperature (   20.5 21 21.5 22 22.5 
Coagulant dosage 
(mg/L) 

 25 50 75 150 175 

 
Table 4, explains the choice of CCD in the addition of axial point to the coded factors that can 
capture curvature and maintain rotatability in the data  where k= the number of factors 
used in the design. Therefore,  (Eguasa et al., (2022)) 
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Table 4: Experimental design (CCD) for TOC, TN and TSS removal  

Exptal 
Run 

pH 
 

Temp.      
 

 

Dosage 
 ( ) 

 

Turbidity 
 

TSS 
 

       BOD 
 

 
      COD 

 

1 -1 -1 -1 53.2 91.1 95.4 28.6 

2 1 -1 -1 30.1 88.9 88.6 11.4 

3 -1 1 -1 59.5 87.7 39.8 88.6 

4 1 1 -1 53.2 91.1 95.4 28.6 

5 -1 -1 1 46.7 89.4 96 50 

6 1 -1 1 69.1 77.7 93.3 69.9 

7 -1 1 1 41.8 64.4 44 22.9 

8 1 1 1 88.2 87.7 94.3 57.1 

9 -1.682 0 0 53.2 91.1 95.4 28.6 

10 1.682 0 0 68.1 87.7 65.9 71.4 

11 0 -1.682 0 53.2 91.1 95.4 28.6 

12 0 1.682 0 53.2 91.1 95.4 28.6 

13 0 0 -1.682 32.1 88.4 92 48.6 

 
Data transformation to RSM data in the interval of zero and one 
 
The operating factor values are coded within the range of 0 to 1, and the data obtained from the 
Central Composite Design (CCD) is subsequently transformed using a mathematical relation: 
 
 

           (13)  

 
where  is the transformed value, is the target value that needed to be transformed in the 
vector containing the old coded value,  represented as ,  and are the 
minimum and maximum values in the vector respectively, (Eguasa et al., (2022)).  
 
The natural or coded variables in Table 4 can be transformed to explanatory variables in Table 5 
using Equation (13).  
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Table 5: Experimental design for Turbidity, TSS, BOD and COD removal using Cucumis Melo 
           coagulant  

Experimenta
l Run 

pH 
 

Temp.      
 

 

Coagulant 
Dosage       

 

Turbidity 
 

TSS 
 

       BOD 
 

 
      COD 

 

1 0.2030 0.2030 0.2030 53.2 91.1 95.4 28.6 

2 0.7970 0.2030 0.2030 30.1 88.9 88.6 11.4 

3 0.2030 0.7970 0.2030 59.5 87.7 39.8 88.6 

4 0.7970 0.7970 0.2030 53.2 91.1 95.4 28.6 

5 0.2030 0.2030 0.7970 46.7 89.4 96 50 

6 0.7970 0.2030 0.7970 69.1 77.7 93.3 69.9 

7 0.2030 0.7970 0.7970 41.8 64.4 44 22.9 

8 0.7970 0.7970 0.7970 88.2 87.7 94.3 57.1 

9 0.0000 0.5000 0.5000 53.2 91.1 95.4 28.6 

10 1.0000 0.5000 0.5000 68.1 87.7 65.9 71.4 

11 0.5000 0.0000 0.5000 53.2 91.1 95.4 28.6 

12 0.5000 1.0000 0.5000 53.2 91.1 95.4 28.6 

13 0.5000 0.5000 0.0000 32.1 88.4 92 48.6 

 
Multi-Response Optimization Problem 
This entails the simultaneous optimization of two or more responses alongside the associated 
factors ( ). The optimization criteria and the desired objectives for the multi-
response problem based on experimental result, as presented in (Joaquin et al., (2020)), are shown 
in Table 6 below. 
 
Table 6: Experimental results for two factors and responses using Cucumis Melo  Coagulant  

 (Joaquin et al., (2020)) 
Criteria Goal Lower Limit  Upper Limit 
pH In the range 1 5 
Coagulant Dosage ( )    In the range 50 150 
Turbidity Reduction (%) Maximize - 66.5 
TSS Reduction (%) Maximize - 92.8 
BOD Reduction (%) Maximize - 92.1 
COD Reduction (%) Maximize - 42.9 
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Based on the type of response, the desirability function transforms the estimated response,  to 

different individual scalar measure,  namely:  

 

For larger-the-better (LTB) response  is given as:   

 

     ,      (14)  

where and L are the maximum acceptable value and lower limit, respectively, of the  
response.where  is the target value of the  response. However, for RSM data, the parameters 
values of are weights taken to be 1 for linearity (Wan (2007); Castillo (2007); He et al., 
(2009; 2012)). 
 
The overall desirability function  
The objective of the desirability function is to maximize the overall desirability , which is calculated 
as the geometric mean of the individual desirability functions. The overall desirability  is expressed 
as: 
 

           (15)                          
 
where is the number of response variables, ( ), ( ),…, ( ) are the individual 
desirability (He et al., (2012)). The desirability function  allocate values 
between 0 and 1 centered on the process requirements such that the most undesirable and 
desirable values are  and  respectively. 
 
Explanation of Statistical terms 
The goodness-of-fit statistics considered in this study are;   
The Prediction Error Sum of Squares (PRESS) statistic, which is often small, serves as a version of 
the cross-validation criterion given as: 
 

          (16) 
 
  criterion was derived as a substitute to the  with the tendency to overfit the data. 
The form of the  criterion for selecting the bandwidths is given as: 
 

                      (17) 

 
where  is the maximum Sum of Squared Errors obtained as the  tend to infinity,  is 
the sum of squared errors associated with a set of bandwidths ,  is the trace of the 
Hat matrix and  is the leave-one-out cross-validation estimated value of  with the  
observation left out (Eguasa et al., (2022); Eguasa and Eguasa (2023)).  
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For data emanating from RSM, the vector of optimal bandwidths  is derived based on the 
minimization of the Penalized Prediction Error Sum of Squares,  (Eguasa et al., (2022)).  The 
Sum of Squares Error (SSE) and the Mean Square Error (MSE) evaluate how effectively each 
regression model estimates , as defined in Equation (1). The criterion for selecting estimates is to 
minimize the sum of squared residuals, also referred to as the Sum of Squares Error (SSE). Thus,  
   
         (18) 
 
The mean square error,  is given as: 
 

           (19) 

 
Here,  represents the sample size,  denotes the number of explanatory variables used in the 
study, and the degrees of freedom ( ) significantly influence the value of the Mean Squared 
Error (MSE). A smaller degree of freedom may result in a larger MSE, while a larger degree of 
freedom can lead to a smaller MSE (Eguasa and Eguasa, 2022). In Response Surface Methodology 
(RSM), the coefficient of determination ( ) and the adjusted coefficient of determination ( ) are 
used to evaluate the adequacy of a model in representing a real system.  measures the proportion 
of the observed variability in the experimental data that the model can explain.  However, since  
tends to increase with the addition of explanatory variables,  adjusts for this limitation by 
considering the number of explanatory variables in the model. The expressions for  and  are 
provided in Equations (20) and (21), respectively.  
  

           (20) 

 

          (21) 

 
The values of  and  statistics should be close to unity for statistical significance of the model 
considered. Thus,  is the number of explanatory variables used in the model,  is the number of 
sample size, is the raw response,  is the estimated response and is the mean response. 
 
4. RESULTS AND DISCUSSION 
 
The results in Table 7 clearly demonstrate that the  method outperformed the second-order 

Quadratic Model (QM) proposed by Joaquin et al. (2020) in terms of key responses, including 
turbidity reduction (%), TSS reduction (%), BOD reduction (%), and COD reduction (%). The  

method achieved superior performance statistics in 16 cells, compared to QM, in addressing the 
multi-response problem.  
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Cells in bold indicate better performance compared to non-bold cells. Lower values of PRESS, SSE, 
and MSE signify improved statistical performance, while higher values of  and  also indicate 

better model performance. 
Table 7:  Model Goodness-of-fits statistics for  and  Cucumis Melo 
Response Model 

     (%) (%) 

  5 - - 2598.69 519.74 90.14 83.10 
  2.3492 57.8794 648.6606 27.3606 11.6468 99.05 95.15 
         

  5 - - 638.48 127.70 92.12 86.49 
  0.0111 75.2069 677.6757 0.0128 1.1559 100 98.00 
         

  5 - - 4760.10 952.02 96.11 93.33 

 0.1244 800.92 7.3077e+003 0.1707 1.3719 100 99.67 

         

  5 - - 5104.94 1020.99 80.69 66.89 

  0.0225 4.8278e+005 4.3557e+006 0.2292 10.1796 100 98.07 

 
 
Table 8, represents the predicted response for Turbidity, TSS, BOD and COD reduction using 
Cucumis Melo as a natural coagulant using . 
 
Table 8: Predicted response for Turbidity, TSS, BOD and COD reduction using Cucumis Melo    
               coagulant  

Exptal 
Run 

Turbidity 
 

 
Turbidity 

 
TSS 
 

        
 TSS 

 
     BOD 

 

      
      BOD 

 

 
      COD 

 

 
    COD 

 

1 53.2 54.4558 91.1 91.1000 95.4 95.4000 28.6  28.6000 

2 30.1  32.3426 88.9 88.9000 88.6  88.6016 11.4  11.4000 

3 59.5  56.7592 87.7 87.7000 39.8 39.8000 88.6  88.6000 

4 53.2  52.2054 91.1 91.1000 95.4  95.3980 28.6  29.0544 

5 46.7  45.3067 89.4 89.4000 96  96.0007 50  50.0000 

6 69.1  69.4846 77.7 77.7001 93.3  93.0472 69.9  69.8961 

7 41.8 44.2503 64.4 64.5053 44 43.9991 22.9  22.9421 

8 88.2 87.9455 87.7 87.6588 94.3 94.6268 57.1  56.9553 

9 53.2 53.2088 91.1 91.0999 95.4 95.4000 28.6  28.6000 
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Exptal 
Run 

Turbidity 
 

 
Turbidity 

 

TSS 
 

        
 TSS 

 

     BOD 
 

      
      BOD 

 

 
      COD 

 

 
    COD 

 
10 68.1 68.0784 87.7 87.7002 65.9 65.9001 71.4 71.4000 

11 53.2 52.2310 91.1 91.1001 95.4 95.4000 28.6 28.6000 

12 53.2 54.0469 91.1 91.0994 95.4 95.4000 28.6 28.6045 

13 32.1 33.6615 88.4 88.4000 92 92.0000 48.6 48.6000 

 
Table 9: Residual response for Turbidity, TSS, BOD and COD using Cucumis Melo as a natural  

  coagulant  
Experimental Run Turbidity 

 
TSS 

 
BOD 

 
       COD 

 

1    -1.2558     0.0000     0.0000    -0.0000 

2    -2.2426     0.0000    -0.0016    -0.0000 

3     2.7408     0.0000    -0.0000     0.0000 

4     0.9946     0.0000     0.0020    -0.4544 

5     1.3933     0.0000    -0.0007     0.0000 

6    -0.3846    -0.0001     0.2528     0.0039 

7    -2.4503    -0.1053     0.0009    -0.0421 

8     0.2545     0.0412    -0.3268     0.1447 

9    -0.0088     0.0001    -0.0000     0.0000 

10     0.0216    -0.0002    -0.0001     0.0000 

11     0.9690    -0.0001     0.0000     0.0000 

12    -0.8469     0.0006    -0.0000    -0.0045 

13    -1.5615     0.0000     0.0000     0.0000 

 
 
 
 
 
 
 
 
 



Vol. 13. No. 1, 2025 Series 

 
 
 
 
 
 
 
 

46 
 

In Figure 1, the deep blue straight line is the zero residual plot, green line is the  plot 
respectively. 
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Figure 1: Model Residuals for  (Turbidity reduction (%)) response plotted against the data 

points for  model. 
 
In Figure 2, the deep blue straight line is the zero residual plot, green line is the  plot 
respectively.  
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Figure 2: Model Residuals for  (TSS reduction (%)) response plotted against the data 
points for  model. 

 
In Figure 3, the deep blue straight line is the zero residual plot, green line is the  plot 

respectively.  
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Figure 3: Model Residuals for  (BOD reduction (%)) response plotted against the data 
points for  model. 
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In Figure 4, the deep blue straight line is the zero residual plot, green line is the  plot 
respectively.  
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Figure 4: Model Residuals for  (COD reduction (%)) response plotted against the data points for      

 model. 

Table 10: Model optimal (maximize) solution based on the multi-response desirability function using  
    Cucumis Melo as a natural coagulant 

Model 
           (%) 

Exptal 
values 5 - 7 - 50-15078.287.7 80.1 64.3 1 1 1 1 100 

 7 - 76.7 77.089.6 86.9 56.9 0.9847 1 1 0.8849 95.50 

 0.9732 0.8580 0.260195.694.0 95.4 97.3 1 1 1 1 100 
 
Table 10 shows that  provide enhanced multi-response optimization for maximizing the 
reduction of turbidity, TSS, BOD, and COD in sewage wastewater treatment using the natural 
coagulant Cucumis Melo. Compared to  achieve higher overall desirability for the respective 
factors: . Obviously,  
gave a better process condition with 100% overall desirability and with operating 
factors with the best choice 
based sewage wastewater treatment via Cucumis Melo as a natural coagulant.  
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Figure 5: surface plot for maximum Turbidity of 90% showing the interactive effect of 

pH and Temperature. 
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Figure 6: Surface plot for maximum Total Suspended Solids (TSS) of 91.0% 

showing the interactive effect of  pH and Temperature. 
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Figure 7: surface plot for maximum Biochemical Oxygen Demand (BOD) of 95.4% 

showing the interactive effect of  pH and Temperature. 
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Figure 8: Surface plot for maximum Chemical Oxygen Demand (COD) of 125% 

showing the interactive effect of pH and Temperature. 
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The maximization of the overall desirability functions for Cucumis Melo are given in Figure 5, 6, 7 
and 8 respectively shows the shapes of the different colour variation in the surface plots 
representing total desirability of the optimization criteria for Turbidity , TSS , BOD 
( ) and COD ( ) reduction respectively. Therefore, in Figure 5, the individual desirability 
function for  is 100% with optimal response 95.6% as against the optimization result for  
with individual desirability function of 98.5% with optimal response 77.0% for Turbidity . 
Whereas, in Figure 6 the individual desirability function for  is 100% with optimal response 
94% as against the optimization result for  with individual desirability function of 100% with 
optimal response 89.6% for TSS reduction , while in Figure 7, the individual desirability 
function for  is 100% with optimal response 95.4% as against the optimization result for  
with respective individual desirability function of 100% with optimal response 86.9% for BOD 
reduction (%).Whereas, in Figure 8, the individual desirability function for  is 100% with 
optimal response 97.3% as against the optimization result for  with respective individual 
desirability function of 88.5% with optimal response 56.9% for COD reduction (%).   
 
5. CONCLUSION 
 
In this paper, we examined the results of the regression models QM and  using the CCD 
approach, considering three operating factors at five levels and four responses within the RSM data. 
The main findings indicate that the kernel function, which determines the shape of kernel weights 
through variable bandwidths, employs  as the explanatory variable for location  the number of 
explanatory variables in the design,  as a target point (dummy variable), and  as the variable 
bandwidth or smoothing parameter controlling the smoothness of the estimated function, as defined 
in Equation (1). This highlights the superiority of the  model over QM, as it effectively corrects 
bias at the boundaries and with unevenly spaced explanatory variables. Statistical analysis of the 
experimental data using the  model demonstrates its ability to enhance operational 
characteristics for optimizing multi-response problems (overall desirability of 100% with operating 
factors ) related to Turbidity, 
TSS, BOD, and COD reduction. Performance statistics, residual plots, and surface plots further 
emphasize the significant improvements achieved by  compared to the existing QM model. 
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