
Vol. 7. No. 4, December, 2019

1

An Intelligent Scheduling Framework in a Factored Operating System
Using Deep Machine Learning

1Habila Mikailu & Agaji Iorshase

1Department of Mathematics/Statistics/Computer Science
University of Agriculture

Makurdi, Benue State, Nigeria

2Blamah Nachamada V.
2Department of Computer Science

University of Jos
Jos, Plateau State, Nigeria

Correspondence Author: Agaji Iorshase
Email: ior.agaji@uam.edu.ng & sasemiks@gmail.com

ABSTRACT

Scheduling has become a complex problem with the advancement in hardware technology. This work designed and
implemented an intelligent scheduling framework model in a heterogeneous many-core environment for a factored
operating system. The framework comprises of a process model, a scheduling model, and a resource performance
model. A Deep Machine Learning Algorithm was used to predict process sizes with respect to resource requirements
as well as resource performance that evaluated and determined resource capacity, and efficiently distribute these
resources to various operating system services. An intelligent scheduling framework that efficiently schedule
processes to processors based on resource requirements and respective processor capacities in factored operating
system was developed. The framework was simulated using Java 2 Enterprise Edition. Experimental results of the
framework indicated a scalable, adaptable, better, faster and efficient scheduling of processes to an increased
multiple resource cores with an enhanced system throughput.

Keywords: Factored operating system, processor burst, space sharing, multi-agent, intelligent scheduling,
 deep machine learning, uniprocessor, multicore system.

1. INTRODUCTION

Scheduling is an activity that handles the removal of running process from the CPU and the selection of another
process for execution on the basis of a particular scheme. Schedulers are special system software that carries out
the activity of process scheduling in various ways. Their primary job is to select jobs into the system and to decide
which process is to execute (Kumari, 2015).

Article Progress Time Stamps

Article Type: Research Article
Manuscript Received: 14th November, 2019

Review Type: Blind Final
Acceptance: 18th December, 2019

 Article DOI: dx.doi.org/10.22624/AIMS/DIGITAL/V7N4P1

Article Citation Format
Habila, M., Agaji, I & Blamah, N.V. (2019)

An Intelligent Scheduling Framework in a Factored Operating
System Using Deep Machine Learning.

Journal of Digital Innovations & Contemp Res. In Sc., Eng &
Tech. Vol. 7, No. 3. Pp 1-14

Vol. 7. No. 4, December, 2019

2

Scheduling problems in operating system comes with a lot of complexity and has attracted research attention over
the years. As such, many scheduling methods have been presented, which were used to overcome many different
problems that arise in scheduling. Scheduling problems have no known polynomial time algorithms, and are therefore
categorized as NP-hard complexity problem. With respect to this reason, several individuals and group of
researchers have applied several scheduling techniques, among which are the operation research, multi-agent, the
artificial intelligence, expert systems, object-oriented and occasionally, a set of two or more of these techniques to
develop scheduling facilities (Ezugwu, 2015). The multicore technology and cloud computing technology are the two
categories of computational hardware developments that are capable of enhancing computing capability to its users.
Thus, to adequately ascertain these computing capacity, a novel operating system with a new scheduling plan is
worthy for these new hardware platforms (Nafaa, 2015).

Single microprocessors will soon contain hundreds to thousands of processor cores with current advancement in
today’s hardware technology. Thus, the manner in which an operating system manages thousands of processors will
be fundamentally different from the way in it manages one or two processors. Consequently, the present-day
operating system architecture according to Wentzlaff and Agarwal (2016) should be rethought in order to benefit from
benefit from the multicore technology. It is predicted that the advancement of manufacturing technology, the
progressing development agreeing to Moore’s law, will afford computer chips with 100 to 1000 processor cores on a
single piece of silicon chip within few years to come (Borkar, 2007). Various researches have shown that the
conventional OS kernel does not scale well beyond eight cores, in spite of the fact that these routines have already
been extensively optimized using fine-grained locks. It has also been found that locks were used to a considerable
degree, which tends to create many opportunities for lock-related failures that are capable to bring down the system
(Fedorovaet al., 2007).

Because the near future manycore processors will consist of thousands of heterogeneous cores, and the existing
systems were not designed to be scalability and to handle the heterogeneity of manycore hardware, is what
necessitated this research. The need for an intelligent scheduling architectural framework that does not support locks
and shared memory abstraction is proposed using multi-agent method technology. In this research, an intelligent
scheduling framework based on: scheduling FOS processes on space sharing approach on heterogeneous multi-
core processors, to facilitate scalability and manage heterogeneity, through a process of determining the
performance of individual processor cores, selects the most optimal processor core for an application process is
proposed. This is achieved using multi-agent system technology where agents collaborate to discover available
processor cores, and optimally schedule these resources to requesting processes.

2. LITERATURE REVIEW

FOS is a new operating system for cloud computing and manycore system with scalability as the main design
constraint, where space sharing replaces traditional time sharing to increase scalability. Wentzlaffet al. (2011)
described factored operating system as an operating system for thousands of processor cores, and that processes
execute on their separate processor core from OS services. The designers of FOS made an assumption that
processor cores will be so abundant in the future whereby devoting a core to a single process is rational without
leading into limitations placed by core count. Servers gain typical operating system functionalities and run on
committed system cores. This method is inspired by online services, and so they are organized in fleets of cores
offering the same functionality to the system. According to Krzyzanowski (2015), the common approach to predict or
estimate the size of the next processor burst is by using a time-decayed exponential average of previous processor
core bursts for the process.

Vol. 7. No. 4, December, 2019

3

A formula for estimating the next processor burst period was presented as:

sn+1 = aTn+ (1 - a)sn (1)

Where Tn is the measured time of the nth burst; sn is the predicted size of the nth processor burst; and a is a weighing
factor, 0 ≤ a ≤ 1.

Nakajima and Pallipadi (2002) implemented a supplementary functionality for a scheduler called Micro-Architectural
Scheduling Assist (MASA) on Linux (2.4.18) primarily as a user program, rather than in the scheduler itself. MASA
used the information from the hardware monitoring counters to measure the load of process packages and
processes. In the prototype of MASA they implemented, the result showed that it improved performance by 6% for
the workloads from SPECCPU2000, especially for floating-point intensive case. However, the effectiveness of MASA
running on various applications was not evaluated.

Zhuravlevet al. (2012) conducted a survey focused on the subset of solutions that exclusively made use of operating
system thread-level scheduling to achieve its goals. Their survey shows that operating system scheduler has
expanded well beyond its original role of time-multiplexing threads on a single core into a complex and effective
resource manager. They viewed the ideal scheduler in future systems to be a: scheduler that balances system
resources among application containers while satisfying applications’ individual performance goals and at the same
time considering global system constraints such as thermal envelope and power budget.

Schartl (2016) identified three design challenges of operating systems for multi-core architectures, they are: locks
which do not scale, poor locality offered by the traditional approach of sharing processor cores between application
and operating system, and no more cache coherent shared memory available to the operating system. The work
discussed the impact of these challenges to scalability, and proposed locks avoidance to counter scalability threat.
The work also proposed splitting up of application and operating system so that they do not need to share cores with
each other anymore, rather, each core will be dedicated to every thread on the system. Furthermore, instead of
cache coherent shared memory, the work proposed the use of message passing for communication. However, it is
still not clear how to design an operating system with locks that proffers satisfactory structural scalability and load
scalability as well, hence, it is a challenge in view of the technological advancement of multicourse.

Martorellet al. (1999) described dynamic Space Sharing (DSS) as a two–level scheduling policy, the high level and
low level space share policies. In the work, high level space shares the machine resources among the applications
running in the system, while the low level improves the memory performance of each program by enforcing the
affinity of kernel threads to specific physical processors. DSS distributed processors as evenly as possible among
applications taking into account the full workload of the system and the number of processors requested by each
application. Each application received a number of processors which was proportional to its request and inversely
proportional to the total workload of the system, expressed as the sum of processor requests of all jobs in the
system.

Vajda (2017) introduced a novel process scheduling method for chip multi-processors with dozens but scalability
spanning to thousands of cores. The method relied on few rules which included a space-sharing idea for scheduling
processes on a manycore chip adapting performance of separate cores and the chip as a whole by a controlled and
scheduled variation of the frequency at which distinct cores execute, reliance on application-generated requests for
computing resources instead of thread assignment policies in the operating system.

Vol. 7. No. 4, December, 2019

4

The method assumed that each application has a certain amount of cores exclusively allocated to it and that only a
single core can actively run an application code, as the sequential portion of the application is executing. However,
issues that need to be looked into are the access latency and the speed to memory and buses. Modzelewski, et al.
(2009) proposed space multiplexing replacing time multiplexing as a replacement of time multiplexing. In their
method, operating system ran on distinct cores from applications, and spatially partitioned working sets. This was
due to the emergence of the multi-core technology. In their design, spatial multiplexing was taken further as FOS is
factored into function specific services, with each distributed into a fleet of cooperating servers. These servers
collaborated to provide a service, and each server is bound to a particular processor core and communicates with
other servers in the same service fleet via messaging.

Their design schedule entailed that whenever an application needs to access a service provided by the operating
system, the application messages the closest core providing the desired service, found by querying the name server.
Although this method may achieve minimal communication cost, however, it may not achieve optimal system
throughput, due to the fact that the closest server to the application process may not match the processing capacity
in respect to the requesting process.

Asmussen et al. (2016) integrated arbitrary cores as first and second class citizens into the system, leveraging on the
idea that cores are abundantly available. They integrated cores and memories into a packet-switched network-on-
chip (NoC) and equipped each core with a data transfer unit (DTU) as the common hardware component. The only
means for the core to communicate with other cores or memories was through the DTU, offering message passing
and memory access. Controlling the DTU allowed the control of core and therefore also the software running on the
core. OS services like file systems and network stacks were provided based on a core-neutral communication
protocol between DTUs.

They also introduced network-on-chip-level isolation, presented the design of microkernel-based OS, M3, and the
common hardware interface, and evaluated the performance of the prototype in comparison to Linux. The result
showed that without using accelerators, M3 outmatches Linux in some application-level benchmarks by more than a
factor of five. However, this design decreases system utilization as processing element (PE) was idled for a certain
time, waiting for an incoming message or the completion of a memory transfer.

Kvalnes et al. (2015) presented the omni-kernel architecture and its Vortex implementation whose goal was to ensure
that all resource consumption is measured, that the resource consumption resulting from a scheduling decision is
attributable to an activity, and that scheduling decisions are fine-grained. They used the method of factoring the
operating system into a set of resources that exchanged messages to cooperate and provide higher-level
abstractions to achieve their goal, with schedulers inter-positioned to control when messages are delivered to
destination resources.

Results from their experiments showed all resource consumption was accurately measured and attributed to the
correct activity, and schedulers were able to control resource allocation. Using a metric that concisely reflects the
main difference between an omni-kernel and a conventionally structured operating system, the fraction of CPU
consumption that can be attributed to anything but message processing, they determined omni-kernel scheduling
overhead to be below 6 percent of CPU consumption or substantially less for the Apache, MySQL, and Hadoop
applications.

Vol. 7. No. 4, December, 2019

5

Reuther et al. (2017) presented an elaborate feature analysis of fifteen supercomputers with big data schedulers. The
theoretical scheduling latency model was the essential performance of scheduler’s feature that was built and
employed for the designing of experiments targeting the measurement of scheduling latency. A detailed benchmark
of Slurm, Son of Grid Engine, Mesos, and Hadoop YARN were the four popular schedulers that were conducted. The
theoretical model was compared with data schedulers and was shown that the schedulers’ performance could be
characterized by two key attributes: the marginal latency of the scheduler and the nonlinear exponent. For all these
four schedulers, the utilization of the computing system was decreased to less than 10 percent for computations that
lasted for only few seconds.

Wentzlaffet al. (2011) demonstrated an experiment in respect to the impact of proper spatial scheduling on
performance, in multi-core processor systems. The experiment uses the read-only file system fleet with ‘good’ and
‘bad’ layouts, and was executed on a 16-core Intel Xeon E7340. This machine had a very small intra-socket
communication cost applying user-space messaging, which revealed significant communication heterogeneity
between intra-socket and inter-socket communication. The result of their experiment showed that good layout is
uniformly better than the bad layout in performance.

Also, they maintained that future multi-cores will feature much greater heterogeneity, and commensurately higher
end-to-end performance inequality from spatial scheduling.Currently research is focused on spatial scheduling in
multi-core technology, but little on intelligent scheduling in factored operating system environment. This research
work therefore, proposes an intelligent scheduling framework in a factored operating system that will make decisions
based on performance metrics, on how to allocate processor cores in a system, thereby enabling fleet of servers
(operating system services) to either grow or shrink to meet their allocation.

3. METHODOLOGY

The research methodology adopted in this work is the Multi-Agent Oriented Software Engineering Development
Method. The aim is to develop a multi-agent scheduling system by using multi-agent technological concepts. The
architecture of the proposed framework is as depicted in figure 1. In figure 1 the architecture is made up of a process
sub-model, a scheduler sub-model, a performance sub-model and resource sub-model as a group of autonomous
intelligent agents. Information about processes is retrieved by the process agent. The process agent in turn predicts
the process’ size using deep machine learning algorithm (ANN) with respect to the degree of resource requirements.
From the result of this prediction, the process agent requests the most suitable scheduler for its process. The
resource agent extracts resource core information, computes the capacities of resource cores and distributes these
resources to the various operating services forming fleets of servers.

The selected scheduler agent in collaboration with other schedulers allocates process with high degree of resource
requirement to a scheduler of high capacity and vice-versa, in an event of several processes with different degree of
resource requirements are requesting for resource services (servers) at a time. The scheduler agent will always
allocate available resource with higher capacity to the requesting processes. The repository agent controls the
knowledge representation (database) of the performance sub- model, where information about the objects is stored
for scheduling purposes. It also consistently updates the object information in tune with changing environment.

Vol. 7. No. 4, December, 2019

6

A deep machine learning using back propagation algorithm was used for process’ size predictions. Figure 2 depicts
the back propagation model of the proposed system. It shows an explicit model of a full scale network with {p1, p2} as
input parameters. Also, two hidden layers with three and two numbers of neurons respectively, as well as one output
neuron are shown. Parameter P1 is associated with weight W11, W12 and W13. Where W11, W12 and W13 represent
input parameter 1 weight 1, input parameter 1 weight 2 and input parameter 1 weight 3 respectively. These weights
were random numbers generated between 0 and1. Each neuron in the hidden layer is represented by ‘a’ which is the
tanh activation function in equation 4. Where b1, b2 and b3 are the bias values for the hidden layer 1, hidden layer 2
and the output layer y respectively.

The deep neural network equations used by Courtial (2017) is adopted in this research work. The input data to the
neurons is normalized in order to get the input values to a given range using Equation 2.

p = + min2 (2)

Where p is the input parameter of the processes, min and max are the minimum and maximum values of the
parameter respectively.

.
 .

.

Fig. 1: The Architecture of the Proposed System

Repository
Agent

Processes

Server 1
Agent

Server 2
Agent

Server 3
Agent

Server n
Agent

.
 .

.

Collaborative
interaction

Resource

Agent

Resource

1 Info.

Resource
2 Info.

Resource
3 Info.

Resource
Info.

.
 .

.

Process
Agent
(ANN)

Process1

info.

Process2
info.

Process3
info.

Process

ninfo.

.
 .

.

Scheduler

Agent1

Scheduler
Agent2

Scheduler

Agent3

Scheduler
Agent n

.
 .

.

Allocation or
matchmaking

 Fleet of servers Fleet of schedulers

Select
scheduler Distribute

resources

Update

Vol. 7. No. 4, December, 2019

7

On the other hand, the output is scaled within the range of 0 and 1 using equation 3.

y = (3)

Where y is the output value of the network

Figure 2: Deep Machine Learning Sub-Model

Equation 4 is the Tan Activation Function used in the forward pass training of the network to segregate the relevant
information.

tanh(p) = (4)

Equation 5 is the Mean Square Error (MSE) used to compute the difference between the estimated and what is
estimated in training the network in order to improve prediction accuracy.

MSE = 2 (5)

 is the predicted value, and is the targeted value of the deep learning network.

A partial differential equation to the cost function (square error) of equation 5 is used in the backward propagation
algorithm network to measure the distance between the predicted value and the actual value.

Repository

Input
Parameters

Output layer Input layer Hidden layer 1 Hidden layer 2

P1

P2
w21

w11

y

w23

w21

w22

w13

w12

w11
a

a

a

b1

w12

w31

w32

w11

w21

w22

a

a

b2 b3

Vol. 7. No. 4, December, 2019

8

Cost Function (CF) = j(w) = 2 (6)

Equation 7 is used in updating the weights in the Back Propagation Algorithm using a gradient decent:

Wl = W - α (7)

Where wl is the new weight, w is the weight, α is the learning rate, and j is the cost function.

The back propagation algorithm was employed as the basis for the learning rule.

3.1 Database Design
Figure 3 depicts the entity relationship diagram used by the framework. The logical structure of the database shows
the various entities of the system framework. These entities include: Traincase, normalize, weight, servers,
schedulers, jobs, cores, executiondetails and executionsummary. Each of these entities contains attributes with one
primary key (PK) that uniquely identifies the various entities, and the foreign key (FK) as well. The relationships
between these entities are basically one to many, and many to many relationships. The relationship between
Traincase, and the Normalize for instance, is many to one relationship, Jobs and Schedulers many to one, Jobs to
Servers many to one, many to many relationship between executionsummary and executiondetails, and so on. This
entity relationship diagram of figure 3 gives the logical structure of the new system design framework database.

Figure 3: The Entity Relationship Diagram

Vol. 7. No. 4, December, 2019

9

3.2 Detailed Design
A UML tool, sequence diagram, was used for detailed design. The sequence diagram of the proposed framework is
as shown in figure 4. In figure 4, a user initiates the execution activity by lunching an application. Processes are
submitted to the activation queue along with their parameters .The process agent uses the processes’ parameters to
predict or estimates the resource requirement (size) of each process. The resource agent will compute the capacity
or performance function of each resource and classified the resources to various operating system servers.The
process agent having determined the resource requirements of each process, now selects schedulers for processes.
The scheduler agents schedule processes based on the resource needed and the capacities of the server (processor
cores). The scheduler agent in collaboration with the resource agent allocates the resource (processor core) to the
processes. The outlined scheduling procedure set is carried out by group of agents, harmonizing the activities of
execution that will yield an expected scheduling result.

Figure 4: Sequence Diagram of the Proposed System

Result

Execute Process

Resource
parameters

: Resources

Compute Res.
Performance

: Resource
Agent

Distribute Res.
to servers

: Server
Agent

: Process
Agent

Start
application

: User

Get process
parameter

Select
Scheduler

Predict
process Size

Request
Execution

: Prediction
Agent

Server list

: Scheduler
Agent

Get Server
list

Allocate process
to servers

Vol. 7. No. 4, December, 2019

10

4. EXPERIMENTAL RESULTS

In simulating the framework Netbeans IDE, MySQL Query Browser, JBOSS 4.2.2.GA Server, and a macromedia
Dreamweaver 8.0were used. Also, integer arrays were used to represent application processes. The parameters of
the array used were the length of the array and the sum of the elements of the arrays. The maximum length of the
array was set to 20; random values between 1to10 were used to represent array elements. The network was trained
using 200 random data sets with input fields containing the normalized values of process’ parameters (Array Length,
and Array Element Sum), and random numbers generated between -1 and 1 that that served as input weights. The
input page for the framework with sample input entries is as shown in figure 5. In figure 5 PERFORM SCHEDULING
is a command button.

Figure 5: The Scheduling Data Input Page

In figure 5 has a field for Number of Jobs, Fix Job Size and Active Scheduler cores. It also has a PERFORM
SCHEDULING command which is used in carrying out the scheduling activities.

Eleven different data sets each made up of job size and number of jobs requesting for system resources were used
in the experiments.

Experiment 1: Framework Performance in carrying out Processes Scheduling
Experiment 1 tests the system performance throughput in terms of scheduling of processes or threads. The inputs to
the framework are the number of job sets, job size and number of schedulers. Job types were randomly assigned to
the job sets. Eleven different job sets with different job sizes and job types were used for this experiment. The result
of the experiment was as seen in column 7 of table 1. The result of table 1 showed that serial number 1, one (1) job
set came in with job size of 20KB, the scheduling time was observed to be 0.02sec using 1 scheduler of 40GHz. Also
in serial number 10, one thousand (1000) job sets came in each with a job size of 20KB, the scheduling time was
observed to be 0.23sec using 1000 schedulers of 24476.0GHz.

Vol. 7. No. 4, December, 2019

11

Table 1: The Results of Experiment1
EXECUTION RESULTS

S/NO Job Type No. of
Jobs

Job
Size(kb)

Schedulers Capacity(PF) Scheduling
Time (sec)

1 File Management 1 20 1 40.0 0.02
2 Data Synchro 2 40 2 80.0 0.02
3 Data Synchro 4 80 4 160.0 0.02
4 PC Security Management 8 160 8 320.0 0.02
5 PC Security Management 10 200 10 400.0 0.02
6 Data Synchro 50 1000 50 1981.0 0.02
7 System File Naming 100 2000 100 3877.0 0.02
8 PC Security Management 300 6000 300 10672.0 0.02
9 System File Naming 500 10000 500 16153.0 0.02
10 PC Security Management 1000 20000 1000 24476.0 0.23
11 System File Naming 1250 25000 1250 25523.0 2

Experiment 2: Scalability and Adaptability of Framework
This experiment was carried out to test the scalability and the adaptability of the framework in respect to the
scheduling time with increase in the numbers of schedulers. The inputs to the system were number of job set and job
sizes. Eleven job sets were used with the same number of jobs and sizes. The numbers of schedulers were
increased accordingly to the fixed number of jobs sizes in order to test how the framework scale and adapt to the
increase of resources. The results of the experiments were as summarized in table 2. Table 2 indicated that the job
set at serial number 1 had 1000jobs each with 20KB of size, were scheduled within a time frame of 49970sec with
one (1) scheduler of 40.0GHz. Also, a serial number 9 showed that 1000 job sets were scheduled within a time frame
of 0.68sec with three hundred (300) schedulers of 10666.0GHz. Furthermore, a serial number 10 of 1000 job set with
the same size of 20KB each, were schedule within 0.14sec with 500 schedulers of 16158.0GHz.

Table 2: Results of Experiment 2

EXECUTION RESULTS
S/NO Job Type No. of

Jobs
Job
Size(kb)

Schedulers Capacity(PF) Scheduling Time
(sec)

1 Data Synchro 1000 20000 1 40.0 49970
2 System File Naming 1000 20000 2 80.0 12485.01
3 System File Naming 1000 20000 4 160.0 3117.5
4 Data Synchro 1000 20000 8 320.0 777.51
5 Data Synchro 1000 20000 10 400.0 497.01
6 PC Security

Management
1000 20000 50 1982.0 19.4

7 System File Naming 1000 20000 100 3877.0 4.7
8 File Management 1000 20000 1 40.0 0.34
9 Data Synchro 1000 20000 300 10666.0 0.68
10 PC Security

Management
1000 20000 500 16158.0 0.14

11 System File Naming 1000 20000 1000 24468.0 0.23

Vol. 7. No. 4, December, 2019

12

5. RECOMMENDATION

The proposed framework is recommended for use because of its capability to adequately scale and adapt to
changing environments, and also its ability that is seen in utilizing the benefits that comes with the advancement in
multicore hardware technology as system throughput is enhanced. In future work, we will introduce process job
transfer between the processor cores, that is when a higher capacity core has finished execution and is idle, then it
can take over from a lower capacity core, this is believed will further increase the system performance throughput.

Vol. 7. No. 4, December, 2019

13

REFERENCE

1. Air Force Research Laboratory (2012).FOS: A Factored Operating System for High Assurance and
Scalability on Multicores. Massachusetts Institute of Technology, Rome, NY 13441.

2. Asmussen, N., Volp, M., Nothen, B., Hartig, H., Fettweis, G., Operating-Systems Chair and Vodafone Chair
Mobile Communications Systems (2016). M3: A Hardware/Operating- System Co-Design to Tame
Heterogeneous Manycores. Retrieved from https://os.inf.tu- dresden.de/papers_ps/asmussen-m3-
asplos16.pdf

3. Courtial, F. (2017). Deep Neural Networks from Scratch. Retrieved on 7th July, 2019, from
https://matrices.io/deep-neural-network-from-scratch/

4. Borkar, S. (2007).Thousand Core Chips – A Technology Perspective. In Proceedings of DAC.Retrieved on
18th April, 2018, from http://impact.asu.edu/cse520fa08/ThousandCore.pdf

5. Chapin, J. S. and Weissman, B. J. (2004). Distributed and Multiprocessor Scheduling. Retrieved on 21st
October, 2018 from, https://www-users.cs.umn.edu/~weiss039/papers/handbook. Pdf

6. Ezugwu, A. E. (2015). Architectural Pattern for Scheduling Multi-Component Applications in Distributed
Systems. Ph.D. Thesis. Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria. 374pp

7. Fedorova, A., Kumar, V., Kazempour, V., Ray S. and Alagheband, P. (2007). Cypress: A Scheduling
Infrastructure for a Many-Core Hypervisor. School of Computing Science, Simon Fraser University,
Vancouver, Canada. Retrieved on 18th April, 2018, from
https://pdfs.semanticscholar.org/7013/915198103d9ec28c2260ce7fe99babd78263.pdf

8. Jain, S. and Jain, S. (2016). A Review Study on the CPU Scheduling Algorithms. International Journal
of Advanced Research in Computer and Communication Engineering, 5(8): 22- 31. Retrieved on 11th
October, 2018, from https://www.ijarcce.com/upload/2016/august- 16/IJARCCE%205.pdf.

9. Kepner, J., Brightwell, R., Edelman, A., Gadepally, V. Jananthan, H., Jones, M., Madden, S., Michaleas, P.,
Okhravi, H., Pedretti, K., Reuther, A., Sterling, T. and Stonebraker, M. (2018). TabulaROSA: Tabular
Operating System Architecture for Massively Parallel Heterogeneous Compute Engines. Retrieved on 29th
August, 2019, from https://arxiv.org/pdf/1807.05308.pdf

10. Krzyzanowski, P. (2015). Operating System: Process Scheduling. Retrieved on 14th of September, 2018
from https://www.cs.rutgers.edu/~pxk/416/notes/07-scheduling.html.

11. Kumari, E. (2015). A Review on Task Scheduling Algorithms in Cloud Computing. International
Journal of Science, Environment and Technology, 4(2): 433 – 439.

12. Kvalnes, A., Johansen, D., Renesse, R., Schneider, F. B. and Valvag, S. V. (2015). Omni- Kernel: Operating
System Architecture for Pervasive Monitoring and Scheduling. IEEE Transactions On Parallel And
Distributed Systems, 26(10): 2849-2862.

13. Laplante, P. and Milojicic, D. (2016). Rethinking Operating Systems for Rebooted Computing. IEEE
International Conference on Rebooting Computing (ICRC). Retrieved from
https://ieeexplore.ieee.org/abstract/document/7738695/authors

14. Modzelewski, K., Miller, J., Belay, A., Beckmann, N., Gruenwald III, C., Wentzlaff, D., Youseff, L. and
Agarwal, A. (2009). A Unified Operating System for Clouds and Manycore: fos Retrieved on 26 th
June, 2018, from https://www.researchgate.net/publication/40000599_A_Unified_Operating_System_for_
Clouds_and_Manycore_fos

15. Martorell, X., Corbalan, J., Nikolopoulos, S. D., Navarro, N., Polychronopoulos, E D., Papatheodorou,
T. S. and Labarta, J. (1999). A Tool to Schedule Parallel Applications on Multiprocessors:
Proceedings of the 12th International Conference on Parallel and Distributed Computing Systems
(PDCS’99), Fort Lauderdale (Florida - USA) http://www.cs.huji.ac.il/~feit/parsched/jsspp00/p-00-7.pdf

Vol. 7. No. 4, December, 2019

14

16. Nafaa, H. (2015). FOS (Factored Operating System): An Operating System for Multi-core and Clouds.
Retrieved on 3rd April, 2018, from http://www.slideshare.net/mobile/naffa1/ factored-operating-system-an-
operating-system-for-multicore-and-clouds

17. Nakajima, J. and Pallipadi, V. (2002).Enhancements for Hyper-Threading Technology in the Operating
System–Seeking the Optimal Scheduling. Workshop on Industrial Experiences with Systems Software,
Boston, MA.

18. Reuther, A., Byun, C., Arcand, W., Bestor, D., Bergeron, B., Hubbell, M., Jones, M., Michaleas, P.,
Prout, A., Rosa, A. and Kepner, J. (2017). Scalable System Scheduling for HPC and Big Data. Retrieved
from, https://arxiv.org/pdf/1705.03102.pdf

19. Schartl, A. (2016). Design Challenges of Scalable Operating Systems for Many-Core
Architectures. Retrieved on 7th April, 2018, from http://www4.cs.fau.de/Lehre/WS16/PS_KVBK/slides/slides-
schaertl.pdf

20. Vajda, A. (2017). Space-Shared and Frequency Scaling Based Task Scheduler for Many-Core OS.
Group Function Technology, Ericsson Hirsalantie 11, Jorvas, Finland. Retrieved on 18th April, 2018,
from https://www.sigops.org/sosp/sosp09/papers/hotpower_9_vajda.pdf

21. Wang, Y., Li, L., Wu, Y., Yu, J., Yu, Z. and Qian, X. (2019). TPShare: A Time-Space Sharing Scheduling
Abstraction for Shared Cloud via Vertical Labels. ISCA ’19: ACM Symposium on Computer Architecture,
Phoenix, AZ. ACM, New York, NY, USA. Retrieved on 10th September, 2019, from
https://doi.org/10.1145/1122445.1122456.

22. Wentzlaff, D., Agarwal, A. (2016). Factored Operating Systems (fos): The Case for a Scalable Operating
System for Multicores. Retrieved on 6th April, 2018, from http://www.slideshare.net/mkindika/factored-
operating-systems

23. Wentzlaff, D., Gruenwald, C., Beckmann, N., Modzelewski, K., Belay, A., Kasture, H., Youseff, L., Miller, J.
and Agarwal, A. (2011). Fleets: Scalable services in a factored operation system. Computer Science and
Artificial Intelligence Laboratory Technical Report, Massachusetts Institute of Technology, Cambridge,
Ma 01239 USA.

24. Zhuravlev, S., Saez, J. C., Blagodurov, S., Fedorova, A. and Prieto, M. (2012). Survey of Scheduling
Techniques for Addressing Shared Resources in Multi-core Processors.ACM Computing Surveys, 45(1):
4:1-28. Retrieved on 21st October, 2018, from http://www.ece.ubc.ca/~sasha/papers/zhuravlev_csur11.pdf

