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ABSTRACT 

 
Gerontechnology has marked a transformative shift in healthcare via its fusion of embedded sensor units with Interne 

of Medical Things (IoMT), which embodies early disease detection and borders on its early warning for prevention. The 

IoMT equipped with sensors and algorithms, continuously monitors patients’ physiological data – provisioning real-time 

monitoring for early identification of potential health anomalies, and wades in with a personalized healthcare approach. 

With vast amount of data acquired, the gerontechs can be successfully trained with machine learning (ML) schemes, to 

gleans off insights via data analytics, and proffer medi-czars with proactive interventions for potential health risks prior 

its clinical manifestations. We posit a hybrid fusion of the dual channel squeeze-and-excite attention mechanism with 

bi-directional gated recurrent unit, for identifying the dementia disease. The model output is utilized as input for the 

GREDDIoMT (wearable) device that senses patient vitals, monitors and alerts on patients with dementia (PwDs), and 

yield resulting detection of the disease. With appropriate features selected for estimation, and imbalanced explored 

dataset resolved via SMOTEENN – our study shows that our hybrid (SENet+BiGRU) ensemble yields F1 0.995, Accuracy 

0.997, Recall 0.998, Precision 1.000, AUC 0.997, and Specificity 1.000 – to accurately classify all 537-cases of test-

dataset. In addition, our proposed hybrid model outperformed the various benchmarks. 
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I. INTRODUCTION 

 

Dementia is chronic, neurodegenerative disease and a major health menace for the elderly (Ejeh 

et al., 2024; Rajayyan & Mustafa, 2023). Characterized by long-term decrease in the cognitive 

processing (AlSaeed & Omar, 2022; Ifioko et al., 2024), its early detection has become crucial 

(Jeon et al., 2021) as the disease features debilitating cognitive impairment with increased 

mortality risks and a declined quality of life in patients (Twait et al., 2023; Yoro & Ojugo, 2019b). 

The remarkable complexity of the brain, allows for a variety of vital functioning ranging from 

problem-solving to critical thinking with decision-making, and memory experience storage (Throm 

et al., 2025). With over 50 million patients globally, and an expected 2.1 billion patients by the 

year 2050 – the provision of medicare for patients is estimated to adequately also cater for the 

world’s 18th largest economy (Dhakal et al., 2023; Ojugo, Yoro, et al., 2015). Thus, dementia has 

become of great medical concern as the elderly population continues to grow. And the quest for 

its early detection has continued to advance the utilization of cost-effective, embedded units with 

speech-based, digital biomarkers (Yasin et al., 2021). The quest for protocol standardization with 

care support units – have continued to bedevil this mode as data corruption and tamper (if and 

when mishandled) can ruin feedbacks, yielding false-negatives (Panagoulias et al., 2022). In 

addition, the advent of the large language models have been proposed as learning strategies that 

can be generalized for the disease’s prediction – targeted at the continued provision for both 

improved care support, and improved quality of lives for patients with dementia (PwD) (Okpor, 

Aghware, Akazue, Ojugo, et al., 2024; Schulz et al., 2019; Yoro & Ojugo, 2019a).  

 

The deployment of wearable devices represents both a bold step towards inclusivity of PwDs, and 

the consequent reachability of medicare every time to all (Obasuyi et al., 2024; Onoma, Ako, 

Anazia, Oghorodi, et al., 2025). The Gerontechnology (or wearables) advances the utilization of 

the Internet of Medical Things (IoMT) (Og & Ying, 2021) to yield the convergence of: (a) a 

wearable technology (Salehi et al., 2022), and (b) adoption of wireless sensor networks (Akazue, 

Edje, et al., 2024). This integration cum fusion advances a body-worn, smart device or unit that is 

equipped with programmable microcontrollers, sensor observation units, and software that ease 

data acquisition cum exchange (Brizimor et al., 2024; Ojugo & Eboka, 2019).  

 

Examples include smartwatch, fitness-trackers, and medical monitors (Krishna et al., 2023) – 

that seamlessly provide PwDs and care-support with enhanced realtime monitoring, and alert 

(Oyemade & Ojugo, 2021) of patients’ physiological metrics. It allows the uninterrupted data 

acquisition (Kakhi et al., 2022) – and aids improved analysis therein as well as unveils a patient’s 

comprehensive health status to uncover potential anomalies with early warning (Nahavandi et al., 

2022) and identification of disease in its localized state (Aghware et al., 2025). The utilization of 

IoMT helps to prevent a disease’s metastasis (Ako et al., 2025), improves patient’s condition via 

initiation of a treatment plan via coordinated prognosis (Pratama et al., 2025), and enhance the 

quality of the patient’s life (Oladele et al., 2024; Roshan, 2022). Gerontechnology assist medi-

experts with non-invasive treatments of lessened-complications (Manickam et al., 2022), less 

side effects, substantial cost savings (Ojugo & Eboka, 2020), and as an expansive tools to help 

manage the early-stage conditions for a patient’s healthcare.  
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While the continuous monitor by Gerontechs proffer data acquisition approaches to yield a 

patient’s baseline health acquired metrics (Bolívar, 2013) – early warning with such predictors 

(as symptoms) can improve a first-responders formulation of a tailored treatment plan to stop as 

close as possible, to the source cum localized region, the disease prior its metastasis (Odiakaose 

et al., 2025).  

 

The utilization of machine learning (ML) can be applied as data analytics to help the IoMT unit to 

adequately recognize anomaly patterns that indicates emerging health issues. A sudden but 

consistent increase in resting heart rate (RHR) may indicate early cardiovascular problem, or an 

impending disorder. MLs are veritable tools, trained to detect anomalous patterns. MLs can be 

grouped into: machine learning (ML) (Onoma, Agboi, Geteloma, et al., 2025), deep learning (DL) 

(Ojugo, Akazue, Ejeh, Ashioba, Odiakaose, et al., 2023; Oppenheimer et al., 2024), and ensemble 

learning (EL) (Binitie et al., 2024). ML's flexibility and robustness help it to learn intrinsic patterns 

and decode predictors that fastens model design for eased outlier identification. Its pitfalls are 

imbalanced dataset and the feature selection mode used.  

 

With DLs to overcome the issues inherent in MLs, DLs utilize recurrent neural networks to capture 

chaotic, high-dimensioned data (Malasowe, Aghware, et al., 2024; Setiadi, Sutojo, et al., 2025). 

Its poor generalization is due to the vanishing gradient problem, which also restricts its usage. 

However, its variant overcomes this via gates to control its input, and eases its adaptability to 

learned changes as long-term dependency (Schwertner et al., 2022; Tyler Morris et al., 2023). Its 

inability to handle larger dataset and longer training time required implies the quest for better 

alternative (Borchert et al., 2023). ELs fuses ML and DL into a stronger classifier with enhanced 

performance (Nayak et al., 2025; Setiadi, Susanto, et al., 2024). To resolve structural conflicts 

and data-encoding conflicts – it leans on the merits of both underlying ML and DL to avoid model 

overfit (Odiakaose et al., 2024). They leverage on the predictive capability of their base (weak) 

learners (Malasowe, Edim, et al., 2024; Ojugo, Ejeh, Akazue, Ashioba, Odiakaose, et al., 2023) to 

enhance its generalization performance, which in turn, benefits from their comprehensive 

knowledge (Islam et al., 2021; Ugbotu, Aghaunor, et al., 2025). 

 

Resolving data imbalance via oversampling has become imperative in ML, as it accounts for the 

minor class as crucial (Aghaunor et al., 2025). It is opposed to under-samplers that often reduces 

or ignore as meaningless, the minor class in a dataset. Thus, we use the synthetic minority 

oversample technique (SMOTE) (Omoruwou et al., 2024), or its variants SMOTE-Tomek and 

SMOTEEN (Okpor et al., 2025). Our study contributes thus: Section 1 introduces the subject with 

gaps that motivate the study, (b) Section 2 explores the proposed method – and leans on data 

collection, pre-processing, dataset split-balance-normalize via SMOTEENN, the hybrid model 

construction, training and validation, and (c) Section 3 – discusses the experimental results 

obtained as evidence in a broader context for the hybrid model on the dementia disease dataset. 
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2. PRELIMINARIES 

 

2.1. Gerontechnology and Machine Learning: A Review 

Our framework leans on the condition that there are IoMT solutions to monitor, set reminders, 

and alert emergency contacts with easily accessible smartphone platforms for dementia patients. 

This study seeks to provide (Geteloma et al., 2024a): (a) develop an IoMT-based artifact fused 

with GPS module, specifically tailored to facilitate family and care-support staff monitoring and 

alert of dementia patients, (b) integration of a reminder module since patients memory often 

relapse with respect to locations and daily activities that implies the continuous attention and 

supervision by family and care-support staff, and (c) integration of a dementia-friendly and easy-

to-use mobile application cum platform with customizable features such as activity logs, location 

alerts, etc – provisioning family and care-support with efficient monitoring and alert of patients as 

in Figure 1, showing the circuit diagram of the proposed device. 

 

 
 

Figure 1. Schematic Diagram of the IoMT Architecture 

 

Our framework leans on the IoMT unit to monitor and alert emergency with accessible 

smartphone for dementia patients. It advances: (a) an IoMT artifact with GPS to alert support-

care, (b) an alert module (Omosor et al., 2025) with daily routines for memory task processing 

and location service of PwDs, and (c) dementia-friendly, mobile app with customizable features 

for support-care with efficient monitoring of PwDs as in Figure 1. The GREDDIoMT consists of: (a) 

ESP32 WROOM as its processing nexus (Eboka, Aghware, et al., 2025), (b) Ublox Neo6M V2 GPS 

(Dwi Rangga Okta Zuhdiyanto & Yuli Asriningtias, 2025) to retrieve coordinates with uniquely-

defined (satellite) service provider code, (c) SIM800l for network service (Omede et al., 2024), (d) 

Max30102 acquires photoplethysmography (wavelength) data to interact with blood constituents, 

(e) SSD1306 OLED for interactive display/feedback to users, (f) MT3608 boosts voltage for the 

ESP32, (g) TP4056 protects the battery from (over)discharge, (h) 5V battery to power device, (i) 

push button for user commands, (j) rocker switch for ON/OFF function, (k) Vero board to hold all 

the components, (l) wires to ease electrical connections on board, and (m) headers to holds 

components connected while still allowing them to be detachable (Okofu, Akazue, et al., 2024; 

Onoma, Ako, Ojugo, Geteloma, et al., 2025). Each connected component is powered via a battery.  
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The GREDDIoMT helps with early detection, continuous monitor, memory functioning, and support 

access for PwDs as in Figure 2. Equipped to address requirements for physical, emotional, and 

cognitive tasks (Onoma, Ugbotu, Aghaunor, Agboi, et al., 2025) – its interface explores a 

dementia-friendly design with refinements to best meet PwDs needs. Its sensors as intra-auricular 

unit, monitors and acquire physiological feats such as blood pressure, blood oxygen saturation, 

and heart rate (David et al., 2023; Ojugo & Eboka, 2018c). With the anatomical and ergonomic 

features of dementia patients in focus, these informed the device's form to ensure a comfortable, 

continuous unit. The device supports a non-invasive, continuous monitoring and alert of care 

providers/family that aligns with the United Nations Sustainable Development Goals 3 (Good 

Health and Well-Being), SDG 9 (Industry, Innovation and Infrastructure), and SDG 10 (Reduced 

Inequalities) (Ojugo & Yoro, 2021). 

 

3. MATERIAL AND METHOD 

 

The proposed transfer learning approach is seen as in Figure 2. 

 
 

 

Figure 2. Proposed Stacking Ensemble with Boosted Learner 

 

Step-1 – Data Collection: We explore the Alzheimer’s disease dataset (Kharoua, 2024) available 

on [web]: https://www.kaggle.com/datasets/rabieelkharoua/alzheimers-disease-dataset, which 

consist of 2,149 patient-records distinguishable with features that are sub-grouped into 

demographic, patient lifestyle, family medical history, clinical observations, cognitive assessment, 

patient observed symptoms, diagnosis data, and expert czars confidential data. The dataset 

records are distributed into groups as 1,061-cases as non-PwDs (non-Patients with Dementia, or 

non-demented), and 1,088-cases as PwDs (demented). The original dataset plot as in Figure 3. 
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Figure 3. Original Dataset Plot by Gender 

 

Step-2 – Pre-processing cleans up the dataset by expunging redundancies to yield integrity, and 

removes missing values to yield quality. The dataset had no missing values cum records. Thus, it 

was then encoded using the one-hot encoding technique mode that transforms categorical data 

into its equivalent binary forms (Ojugo & Eboka, 2018c; Ojugo & Otakore, 2018). 

 

Step 3 – Relief Rank Feature Selection: We select strictly, only relevant predictors and expunge 

all docile feats and reduce dataset dimensionality, to aid fastened model construction (Ying, 

2019). The relief rank feature selection approach is performed as thus: (a) it assumes that all 

features have same weight and influence on accuracy, (b) identifies the nearest sample from the 

same class as the nearest hit, and the nearest sample from a varying class as the nearest miss, 

and (c) uses feature value of nearest neighbour to update its weight(s) (Geteloma et al., 2024b). 

It assesses the correlation of all predictors for ground-truth as in Eq. 1 (Okpor, Aghware, Akazue, 

Ojugo, et al., 2024). With a threshold of 8.321 as computed, algorithm 1 ranked features to 

choose a total of 20 predictors as in Table 1, from the original UCI dataset with the initial 30 

features. 

𝑌 =  100 ∗ ∑|(𝑥1
2 − 𝑥2

2)2 + (1 − 𝑥1
2)2|       (1) 

 

Table 1. Alzheimer’s’ Disease and Healthy Aging Dataset 

Parameters Description Data Type Select 

patientID Patient identity number integer Yes 

age Range of age from 60-to-90years of old integer Yes 

gender Sex of patient (0=Male, 1=Female) binary No 

ethnicity Ethnicity (0: Caucasian, 1: African, 2-Asian, 3-Others)  integer No 

educationStatus Patient’s educational status (0: None, 1: Primary, 2: 

Secondary, 3-Bachelors, 4-Higher)  

integer Yes 

bmi Body mass index of patient ranging from 15-to-40 float Yes 

smokingStatus Patient’s smoking status (0: No, 1: Yes)  binary Yes 

alcoholConsumed Alcohol consumption in unit ranging from 0-to-20 float No 

physicalActivity Weekly physical activities in hours (1-to-10) float Yes 

dietQuality Patient’s diet quality ranging from 0-to-10 float Yes 

sleepTime Patient’s sleep time and quality ranging from 4-to-10 float No 

familyHistory Patient’s family history of Alzheimer’s (0: No, 1: Yes)  binary Yes 

cardioDisease The occurrence of cardiovascular disease (0: No, 1: Yes)  binary No 
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Parameters Description Data Type Select 

diabetes Presence of diabetes (0: No, 1: Yes)  binary Yes 

depression Presence of depression (0: No, 1: Yes) binary Yes 

headInjury History of head injury (0: No, 1: Yes) binary Yes 

hypertensionStatus Presence of hypertension (0: No, 1: Yes) binary Yes 

systolicBP Systolic blood pressure range (90-to-180mmHg) integer No 

diastolicBP Diastolic blood pressure range (60-to-120mmHg) integer No 

cholestorolTotal Total cholesterol levels range (150-to-300mg/dL) float No 

cholestorolLDL Level of low-density lipoprotein cholesterol (50–200mg/dL) float Yes 

cholestorolHDL Level of high-density lipoprotein cholesterol (20–100mg/dL) float Yes 

cholestorolTriglyceride Level of triglycerides range (50-to-400mg/dL) float No 

MMSE Mini-mental state exam score range (0-to-30) with lower 

score as impairment  

float No 

Parameters Description Data Type Select 

functionalAssessment Memory function assess ranging from 0-to-10 with lower 

scores as greater impairment 

float Yes 

memoryComplaints Presence of memory complaints (0: No, 1: Yes) binary Yes 

behaviouralProblems Presence of behavioural problems (0: No, 1: Yes) binary Yes 

adl Activity of daily living score range (0-to-10) with lower score 

as greater impairment 

float Yes 

confusion Presence of confusion (0: No, 1: Yes) binary Yes 

disorientation Presence of disorientation (0: No, 1: Yes) binary Yes 

personalityChanges Presence of personality changes (0: No, 1: Yes) binary  

difficultyTaskCompletio

n 

Presence of difficulty of completing memory challenge-

response tasks (0: No, 1: Yes) 

binary  

forgetfulness Presence of forgetfulness (0: No, 1: Yes) binary  

doctorInCharge Doctor-In-Charge confidential report XXXConfid Yes 

diagnosis Presence of Alzheimer’s (0: No, 1: Yes) binary Yes 

alzheimirsClass Target class as Alzheimer’s (0: No Alzheimer’s; 1: 

Alzheimer’s) 

binary Yes 

 

Step 4 – Data Split/Balance: First, dataset is split into train (75% or 1,612-labels), and test (25%, 

or 537-labels). The action of balancing seeks to resample the dataset, by interpolating its nearest 

neighbour to create synthetic data-points that eventually repopulates the pool, or by removing 

data-points from the training pool (subset) to create a balanced dataset. Using SMOTE-ENN 

(Ojugo et al., 2014; Ojugo & Eboka, 2018a), we fused the SMOTE-oversampler with ENN-

undersampler as in algorithm 2 with Figure 4 showing SMOTEENN plot.  
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Algorithm 2: SMOTE-ENN Data balancing approach 

1. load dataset with trainTestSplit  stratifyShuffleSplit trainset (75%) and testSet (25%) 

2. for trainset, use 5-fold split with randomState = 42 

3.     choose random point from minorClass 

4.     for each selectedData  compute: relativeDistance && kNearestNeighbour 

5.     choose randomValue [0,1] && compute randomValue * relativeDistance 

6.     update minorClassNew && repeat till setThreshold is reached for minorClassNew 

7.     select randomMinorClass: compute kNearestNeighbor(randomized_data) 

8.     with selected minorClassNew  evaluate newPool with editedNearestNeighbour function 

9. end editedNearestNeighbour 

 

The choice of data splitting depends on the tradeoff between the need for a more robust model 

favoring the 75%:25% train-and-test ratio mode, or it can be poised towards the need for 

improved performance as guided by model complexity, larger dataset size and other feats so as 

to favor the 80%:20% mode. Here, our choice of the 75%:25% ratio leans on the small nature of 

the explored dataset with 2,149 records so that we can ultimately have a more robust evaluation 

on diverse unseen held-out (test) dataset, address the issue of flexibility in feature selection with 

a more adaptive assessment with more accurate and less bias generalization of the model. In 

addition – with the train-subset still unbalanced, we performed data normalization using the z-

score normalization as in Equation 2. Figure 5 shows the normalized data plot. 

 

𝑧 =  
𝑥 − 𝜇

𝜎
      (2) 

 

  
Figure 4. SMOTEENN Data Balancing Figure 5. Normalized plot 

 

Step-5 – Fused SENet-BiGRU Ensemble The utilization of ML schemes in deployment of medical 

apps for early detection of disease (with dementia as case in point) have sought to explore a 

variety of techniques poised at improved generalization and performance (Parikh et al., 2019). 

Previous works for behavioural risk in disease detection have explored a variety of dataset (Ojugo 

et al., 2021; Ojugo & Yoro, 2013) – which in turn, also have showcased a variety of performance 

predictions as captured. While, identification of dementia is quite challenging, its performance 

accuracy have ranged between 0.69-to-0.89 (El Massari et al., 2022). To achieve a perfect score 

of 1.00 implies model must circumvent critical factors that hinder performance such as: (a) 

imbalanced dataset due to homogeneity complexity, (b) model must be sensitive enough to 

identify hidden patterns vis-à-vis become adaptive to capture predictor bias and variations, and 

1085 

1088 

1083

1084

1085

1086

1087

1088

1089

Non-PwDs PwDs

1088 1088 

0

200

400

600

800

1000

1200

Non-PwDs PwDs



   
  
 
  
  

 

 

  

 

 

 

44 

Creative Research Publishers       

https://www.crossref.org/06members/50go-live.html 

 

     Vol  11, No  2, June 2025 Series  
 

 

(c) model experiencing data leakage(s) (Eboka, Odiakaose, et al., 2025). To study these impact – 

we evaluate for Accuracy, Precision, Recall, Specificity, and F1 performance metric via a hybrid 

dual channel squeeze-and-excite network with a bi-directional gated recurrent unit (BiGRU). This 

is explained as thus (Al-Hammadi et al., 2024; Reinke et al., 2023).  

 

The BiGRU: The LSTM without proper setting is caught up with the challenge of the vanishing 

problem. BiGRU yields a simpler structure (as a variant RNN) (Yao et al., 2022) and also 

overcomes the vanishing gradient problem in LSTM as it fuses both the input and forget gates 

into a single update gate; And in turn, reduces the number of predictors to be trained (Aghware et 

al., 2025). These speeds up the construction of the model and its training without trading off 

much of its memory capability. Similar to BiLSTM – the BiGRU yields a 2-way data processing 

capability to capture the before/after context in each data sequence.  

 

It achieves this via the Update and Reset gates as in Equations (1)-(2) respectively (Otorokpo et 

al., 2024; Oyemade & Ojugo, 2020) – where 𝑢𝑡 is update gate, 𝜎 is sigmoid function, W is weight 

matrix, 𝑊𝑢 is weight of update gate, ℎ𝑡−1 as hidden state in previous time, xt is input at time t, rt is 

reset gate, ℎ̿𝑡 is new hidden state candidate value for the memory cell, and ℎ𝑡 is the updated 

hidden state at time t. Thus, the model captures bidirectional data context – to yield an improved 

understanding of all intricate data dependencies with carefully tuned hyper-predictor to help 

achieve a greater balance for train speed, result convergence, memory requirements, enhanced 

accuracy, and task distribution. Model configuration is seen as in Table 2. 

 

𝑢𝑡 = 𝜎(𝑊𝑢[ℎ𝑡−1, 𝑥𝑡])   (1𝑎) 

𝑟𝑡 = 𝜎(𝑊𝑟[ℎ𝑡−1, 𝑥𝑡])   (1𝑏) 

ℎ̅𝑡 = 𝑡𝑎𝑛ℎ(𝑊[𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡])   (2𝑎) 

ℎ𝑡 = (𝑢𝑡 ∗ ℎ𝑡−1(1 + 𝑢𝑡) ∗ ℎ̿𝑡)   (2𝑏) 

 

Table 2. The BiGRU Design Configuration 

Features Value Description 

RNNLayer Bidirectional (GRU(64)) Bidirectional RNN: 64-GRU (1st) and 32-GRU (2nd) layer 

returnSequence True (for first layer) Returns entire output sequence for the first layer 

inputShape xTrainScaledShape[1],1 Same as predictors in xTrainScaled: a feat per timestep 

denseLayer yTrainResampleMax()+1 Same as classes in y_train_resampled / output_layer 

activation Softmax Output Activation function for multi-class classification 

optimizer Adam learnRate=0.001, beta1=0.9, beta2=0.999, epsilon-1e-07 

lossFunction categorical_crossentry Loss function for multi-class classification 

 

1. The Dual Channel Squeeze-and-Excitation (SENet) as an attention mechanism, enhances our 

BiGRU’s performance by explicitly modeling inter-channel dependencies (Ucar & Korkmaz, 

2020). It recalibrates the importance of each channel, and improves the attention network's 

capability to selectively focus on relevant features within the dataset (Atuduhor et al., 2024; 

Zuama et al., 2025). Its actions are steered by three (3) steps namely: 
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a. Squeeze: Its global average pooling reduces the spatial dimensions of each channel's 

feature map into one global feature. It yields a vector whose length equals the number of 

channels. Next, it transforms the spatial data into global features that capture the overall 

context of each channel using Equation 3 where Xc is c-th feature map, H*W is the size of 

the feature map, and Fsq(xi) is the output value (Akazue, Okofu, et al., 2024; Ojugo, 

Odiakaose, Emordi, Ejeh, et al., 2023). 
 

𝑧𝑐 = 𝐹𝑠𝑞(𝑥𝑖)
1

𝐻 ∗ 𝑊
∑ ∑ 𝑋𝑐

𝑊

𝑗=1

𝐻

𝑖=1

(𝑖, 𝑗)     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3 

 

b. Excitation: The global feature vector is sent through a 2-layer fully connected network that 

first, reduces and then expands its number of channels. In addition, its middle layer uses a 

ReLU, while its final layer uses a Sigmoid function to generate weights for each channel. The 

weights show relative importance of each channel, with higher values indicating greater 

significance as expressed in Equation 4 (Aghware et al., 2024; Okofu, Anazia, et al., 2024). 
 

𝑠 = 𝐹𝑒𝑥[𝐹𝑠𝑞(𝑥𝑐), 𝑊] = 𝜎 (𝑊2𝛿 ⋅ (𝑊1𝐹𝑠𝑞(𝑥𝑐)))      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4 

 

c. Recalibration: Here, the generated weights are applied to each channel of the original 

feature map (through channel-wise weighting), adjusting the features of each channel. This 

allows the network to focus more on the features of important channels. 

 

Attention schemes rely on average/max pooling to extract key knowledge; But a single pooling is 

quite insufficient to capture a dataset’s feature diversity and complexity. We address this 

limitation via the dual-channel SENet, which splits the feature map channels into two groups 

based on inherent channel characteristics. Each group computes and applies its own attention 

weights via a separate excitation net; Which in turn, allows each group of channels to receive 

different weightings based on their distinct roles therein a task. In addition, the weighted feature 

maps are aggregated to yield the net final outcome. The network automatically adjusts to focus 

on the more important channels vis-à-vis suppresses all irrelevant channels. This dual-channel 

SENet not only adjusts the importance of individual channels – it also offers greater flexibility in 

weights tuning for the various features (Datta et al., 2021; Jerbi et al., 2023). 

 

Step 6 – Train/Cross Validation is initialized with default configuration as in Tables (2)-(5) to tune 

hyperparameters. Each tree is iteratively constructed and trained to ensure the collective 

knowledge to identify intricate data. Training blends synthetic with original data to guarantee its 

comprehensive learning with improved adaptability to various configurations (Setiadi, Muslikh, et 

al., 2024). 
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4. RESULTS AND DISCUSSION 

 

4.1. Ensemble Performance 

For a comprehensive evaluation devoid of overfit, we use a 5-fold training partition on the 75% 

train-subset obtained via SMOTEENN, and a final evaluation carried out via a held-out test (25%) 

as in Table 6. Proposed hybrid yields average Accuracy 0.997, Recall 0.998, Precision 1.000, F1 

0.995, Specificity 1.000 and AUC 0.997.  

 

Table 3. SENet-BiGRU Performance Metrics 

 

Models 

5-Fold Training with Validation Held-Out  

Test Dataset Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 

Accuracy 0.991 0.981 0.997 0.998 1.000 0.997 

Recall 0.981 1.000 0.975 0.976 1.000 0.998 

Precision 1.000 0.984 1.000 0.996 1.000 1.000 

F1 0.991 0.989 0.995 0.985 1.000 0.995 

MCC 0.982 0.963 0.955 0.985 1.000 0.986 

Specificity 1.000 1.000 0.985 0.998 1.000 1.000 

AUC-ROC 0.999 0.999 0.986 0.996 1.000 0.997 

 

Its high MCC implies that model accurately/consistently handles the dataset minority class with 

SMOTEENN balancing and normalization performed; while the Specificity of 1.00 implies that the 

model effectively recognizes dementia disease symptoms, and that no benign records were 

misclassified. The held-out test (25%) assesses the model’s generalization ability with unseen 

data. The AUC of 0.997 implies that the model was able to differentiate between the benign and 

malignant records. 

 

As in Figure 6, the AUC of 0.997 shows the model’s capability to differentiate the negative and 

positive classes. Model accurately identified all 537-records of the test sub dataset. With only 

one-misclassified and false positives – a Specificity of 1.000 implies that no dementia disease 

case was misclassified. This is critical to avoid misclassification (model sensitivity) in detecting 

dementia (Ojugo, Eboka, et al., 2013, 2015). Thus, proposed model enhances dementia disease 

detection performance and generalization on both the training and the held-out test subset(s). 
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Figure 6. ROC Result of the Held-Out Test Dataset 

 

Figure 7 implies the hybrid SENet-BiGRU ensemble correctly classified all test data. The utilization 

of both feature selection, SMOTEENN, and z-score normalization did not degrade generalization 

(Setiadi, Ojugo, et al., 2025). Rather, it focuses on critical feats for model construction to 

successfully detect the dementia disease predictors with reduced errors (Agboi et al., 2025; 

Ojugo, Ugboh, et al., 2013; Ojugo & Eboka, 2018b; Ojurongbe et al., 2023). 

 

 
 

       Figure 7. Confusion Matrix 

 

4.2. Ablation Studies with Benchmark Comparison 

Table 4 shows ablation report with performance of the base learners applied. Our hybrid 

ensemble yielded best result with F1 0.699, accuracy 0.697, precision and recall values of 0.685 

and 0.684 respectively. Conversely, our benchmarks yield the F1 range [0.611, 0.639], Accuracy 

range [0.619, 0.637], precision range [0.632, 0.64] and recall range [0.634, 0.64] respectively 

(Malasowe, Ojie, et al., 2024; Malasowe, Okpako, et al., 2024; Ojugo & Okobah, 2018). 
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Table 4. Ablation Results Per Components. 

Models/ Components Accuracy Precision Recall F1 

RNN 0.619 0.632 0.634 0.611 

BiGRU 0.627 0.642 0.653 0.631 

Attention Mechanism + BiGRU 0.637 0.640 0.640 0.639 

Hybrid SENet + BiGRU 0.697 0.685 0.684 0.699 

 

With the relief ranking feature selection strategy as applied – Table 5 shows performance of our 

hybrid versus the benchmark models. Results shows that our hybrid ensemble out-performed the 

benchmark with F1 0.857, accuracy 0.832, Precision and Recall values of 0.846 and 0.847. 

Conversely, our benchmarks yield F1 range [0.801, 0.839], accuracy range [0.769, 0.826], 

precision range [0.798, 0.830] and recall range [0.799, 0.845] respectively (Muhamada et al., 

2024; Muslikh et al., 2023; Yoro et al., 2025). 

 

Table 5. Performance with and Without Relief Ranking Feature Selection 

Components 
Without Relief Ranking  With Relief Ranking 

Accuracy Precision Recall F1  Accuracy Precision Recall F1 

RNN 0.619 0.632 0.634 0.611  0.769 0.798 0.799 0.801 

BiGRU 0.627 0.642 0.653 0.631  0.819 0.842 0.822 0.842 

Attention Mechanism + BiGRU 0.637 0.640 0.640 0.639  0.826 0.830 0.845 0.839 

Hybrid SENet + BiGRU 0.697 0.685 0.684 0.699  0.832 0.846 0.847 0.857 

 

With the SMOTEENN strategy applied – Table 6 shows our hybrid outperformed the benchmark 

with F1 0.995, accuracy 0.997, precision 1.000 and Recall 0.998 respectively. Conversely, our 

benchmarks show various ranges with F1 range [0.921, 0.955], accuracy range [0.921, 0.958], 

precision range [0.911, 0.951] and recall range [0.911, 0.952] respectively (Okpor, Aghware, 

Akazue, Eboka, et al., 2024). 

 

Table 6. Performance with and Without SMOTE-Tomek Data Balancing 

Components 
Without SMOTE-Tomek  With SMOTE-Tomek 

Accuracy Precision Recall F1  Accuracy Precision Recall F1 

RNN 0.769 0.798 0.799 0.801  0.921 0.911 0.911 0.928 

BiGRU 0.819 0.842 0.822 0.842  0.928 0.944 0.944 0.938 

Attention Mech. + BiGRU 0.826 0.830 0.845 0.839  0.958 0.951 0.952 0.955 

Hybrid SENet + BiGRU 0.832 0.846 0.847 0.857  0.997 1.000 0.998 0.995 

 

Table 7 shows that the proposed model outperforms others due to its use of BiGRU with the dual 

channel attention mechanism across the test dataset – achieving its high accuracy 0.997, 

precision 1.000, recall 0.998, specificity 1.000 and AUC 0.997.It yields best generalization with 

low false-positives, which is crucial in dementia detection especially (Ako et al., 2024; Ojugo et 

al., 2024; Ojugo & Otakore, 2020; Ugbotu, Emordi, et al., 2025). 
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Table 7. Comparison with Related Works 

Metrics 

SEM + DBN 

(Al-Hammadi 

et al., 2024) 

DHH + GRU 

(Noviandy et 

al., 2024) 

BiGRU + 

FSOR (Luz et 

al., 2023) 

LSTM + CNN 

(Ntampakis 

et al., 2024) 

GBM + PSO 

(Miah et al., 

2021) 

Proposed  

SENet +  

BiGRU 

Accuracy 0.973 0.919 0.986 0.992 0.969 0.997 

Recall 0.974 0.959 0.989 0.989 0.976 0.998 

Precision 0.982 0.948 1.000 0.992 0.947 1.000 

F1 0.976 0.973 0.991 0.985 0.974 0.995 

AUC-ROC 0.938 - 0.928 0.987 0.958 0.997 

 

Models leverage deep learning capabilities – their performance can be seen to be slightly lower in 

metrics, and the lack thereof of specificity indicates that they are less robust; whereas, our model 

can be seen to maintain high sensitivity performance, even with its transfer learning architectures 

(Ojugo, Odiakaose, Emordi, Ako, et al., 2023; Onoma, Agboi, Ugbotu, et al., 2025). We used the 

SMOTEENN scheme to address class imbalances. 

 

4. CONCLUSIONS 

 

The study affirms that our proposed ensemble, which yields a strong potential with improved 

performance generalization, and a classification accuracy of 0.997 – fully and functionally equips 

the GREDDIoMT device with learning intelligence required to identify and classify the dementia 

disease. The increased early detection rate(s) at its training and validation with its increased 

accuracy and decreased loss suggest that the proposed hybrid model is quite robust and well-

regularized as its success is attributed to the effective fusion of the SMOTEENN data balancing 

technique, the optimized predictors as selected via feature selection approach, and the suitable 

deep learning scheme utilized.  

 

These, have revealed Recall 0.998, Accuracy 0.997, Precision 1.000, F1 0.995, Specificity 1.000 

and AUC 0.997 respectively. In addition, the proposed ensemble achieved high discriminative 

capability via statistically fused heuristics mode to successfully mitigate class-imbalance with 

enhanced evaluation scores for F1, Accuracy, Recall, Specificity and AUC respectively. Study 

advances a lightweight yet effective framework that avoids complex training and validation that 

results in overfit or over-parameterization, effectively handles larger data complexities; while 

offering interpretability and high performance. 
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