
 Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 5 No. 2. June 2014 – www.isteams.net/cisdijournal

105

ENHANCING SAFER COMPUTATION THROUGH A BETTER
KNOWLEDGE OF VIRUS INTERNAL MECHANISMS ON

COMPUTING PLATFORMS

1Odule, T.J. & 2Awodele, O.
Department of Mathematical Sciences, Olabisi Onabanjo University, P.M.B. 2002 Ago-Iwoye, Nigeria

Department of Computer Science, Babcock University, Ilishan Remo, Nigeria.
E-mail: tola.odule@oouagoiwoye.edu.ng; awodeleo@babcock.edu.ng

ABSTRACT

An exposition of the nature, structure and mode of operation of computer viruses is hereby presented, with the assertion that
computer viruses are best managed through a proactive measure using a cryptographically strong checksumming algorithm
that generates a fingerprint for each executable stored on the system. Verification is then performed prior to running an
executable file to ascertain that the system is in a ‘safe state’ since the last run. This ensures inoculation against all present
and future viruses with absolute guarantee.

Keywords: Executable-file, cryptographic-checksum, interrupt-vector, encryption, signature.

1. INTRODUCTION

A virus is an infectious computer program that attaches itself to executable files, boot sector of a floppy disk, partition sector
of a hard disk, batch files and device drivers to hide and propagate itself without immediately revealing its presence on the
computer system. Viral programs have three main variants [1] namely: Trojan horses, worms and virus. The main difference
among these variants is in their mode of operation. A Trojan horse, in every sense, resembles and works like a normal
computer program. Each time the program calls for keyboard input and a response is made, it may result in the reprogramming
of the keyboard keys such as ‘d’ key expanding to ‘del’ thus deleting a specified medium. This type of viral program is
normally propagated via device drivers like ANSI.SYS using the ANSI escape sequences or the dynamic link libraries using
one of several sophisticated methods. Worms, unlike a virus recreate completely, making precise duplicates of themselves.
Multiuser systems and electronic communication networks are natural homes to worms. They propagate through multiple
computer connections network communication channels. Worms have the effect of slowing down the processing speed of the
computer, which may be disruptive in a real-time process. Viruses and worms are best defined by replication, executable path,
side effects and disguise [2].

2. CLASSIFICATION OF VIRUSES

Viruses are classified into two groups in accordance with the runnable program file infected: virus and

 virus

 virus [3] changes the substance of either the disk or the segment bootstrap area,
contingent upon the infection and disc nature, ultimately supplanting the authentic substance with its own form. The first
form of the changed area is ordinarily put away elsewhere within the disc, such that during system start-up, the infected copy
first gets executed. The rest of the infected program is thereafter brought into memory, immediately matching it with the
invocation of the first form of the . The infection consequently persists in memory-till the PC is turned
off.

A virus typically employs three different constituent parts in its technology:
 The supplanted with an infected copy, thus paving way for the virus.
 A hitherto free sector—meant to keep the initial .
 Several formerly free areas on disk —meant to keep majority the viral program.

Examples are —a removable disc , as well as both of which removable
and fixed disc .

modify The internal makeup of executable files including device drivers are usually modified by [4].
These viruses embed themselves toward the end or beginning of the executables while the bulk of the target code is left
unchanged. The first branching instruction in the program is modified, as is the case in Vienna and Datacrime, though
application efficiency is typically maintained. Although, quite a number of viral programs exist which overwrites the initial
program entry point, thus rendering it ineffective. While the methodology may appear to be less contagious compared to that
employed by terminate-and-stay resident (TSR) viral programs, [5] the infection effects is equally damaging or even worse
in contrast to the TSRs. In addition, tracing them is problematic due to the fact that the vector table and contents of
accessible storage are left intact while their infective performance are naturally very irregular.

 Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 5 No. 2. June 2014 – www.isteams.net/cisdijournal

106

Hybrids: Both aforementioned techniques are featured by some viral codes. An example of these is [6], which
corrupts program files when executed, leaving slight traces of terminate-and-stay resident portion in storage in the aftermath
of corruption. The payload is inherent in the TSR segment whereas the self-reproducing program statements are held offline.
Variants of these viral programs may be coded to function in ways quite different from these descriptions.

3.1 Manifestation of viruses
Viruses use hiding mechanisms, which allow them to replicate unnoticed, before delivering the ‘payload’. Viruses employ
two hiding mechanisms: encryption and interrupt interception.

3.2 Encryption
A handful of viral programs encrypt their instruction sequence such that the bulk of this sequence looks dissimilar in every
program file infected. The sole intention of this is to thwart any effort aimed at dissecting any known sample-- --
from the viral program as it mutates once it attacks an application [7] as shown in Figure 1.

(a) (b) (c)

Figure 1 Three viruses infected with an identical encrypted virus

Prior to being invoked, the viral program is decoded to make the code expressive and executable. It is a requirement that the
decoding module is in plain text format, ideally comprising between ten and twenty characters, uniquely applicable to all
corrupted program files depicted as ‘KI’ in Fig. 1. The encryption key is usually linked, mathematically or otherwise, to the
length of the executable.

The opportunities for presenting confusions in encrypted viral programs are essentially limitless. It is possible, for instance,
to embed the key for another round of encryption in coded manner in the first round in a double round encryption.
Alternatively, cryptographically stronger algorithm may be used in place of the simple functions like exclusive-or (XOR) as
in Cascade [8].

3.3 Interrupt Interception
Virus presence may effectively be concealed in an infected PC by using interrupt interception. Most PC-based user programs
deploy program interrupts to interface the operating system in a compact manner [9]. Branching locations are, for example,
contained in the vector table placed at the start pf program memory, Fig. 2, so that upon the generation of an interrupt by an
application, there is a branch to a programmed location.

 Figure 2: Interrupt Table

When a call is thus made via the operating system, it is intercepted by the viral program, which consequently delivers its
payload upon the receipt of such request; since several of such locations may be changed by a virus, as shown in Figure 3.
The Brain virus [10] uses this technique.

INT FFh

INT 02h

INT 01h

INT 00h

…

Program 1 KILs@*371r$~ Program 2 KI619[/dv#2%8 Program 3 KI!”25%^&gz74

 Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 5 No. 2. June 2014 – www.isteams.net/cisdijournal

107

Replicating code of virus Replicating code of virus 2

Replicating code

(a) (b)
 Figure 3: Interrupt routing before and after infection

3.4 Binary Viruses

 constitute distinctive instances of scrambled viral programs. The principle is that a viral program contains
the reproducing instruction sequence in its entirety, with about 50% of its attendant effect. Just upon the invocation of the
accompanying part of the infectious code conveying the other portion of the effect, the mix of the two halves results in
executable expressive instructional sequence. as shown in Figure 4. This combination may be accomplished through the use
of procedure on both parts. However, conducting investigations on the attendant effects of a is
impossible without being in possession of both parts.

Payload part 1

Payload part 2

Combined payload

Figure 4: Binary virus—two parts combining to get a meaningful payload

While this notion was viewed as a dangerous development in virus sophistication, it has not been widespread. One of the
very few viruses that seem to have incorporated this concept is the . As a component of the attendant effect,
the initial viral code includes instruction run shown in Figure 5 on Intel machine and its classes [11]:

CLI

MOV AX,3 ; Set count

LABEL: MOV CX,100h

MOV DX,0 ; Page 0 RAM

MOV DS,DX ; Segment 0

XOR BX,BX ; Offset 0

PUSH AX ; Save the count

INT 3h

INT 3h

POP AX ;Restore count

INC AX ; Increase count by 1

CMP AL,1Ah ; Count = 26?

JL LABEL ;Repeat code if less

…

Figure 5: Specimen code sequence of a Binary virus

INT Vector

O/S

Virus

Application
Application

INT Vector

O/S

 Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 5 No. 2. June 2014 – www.isteams.net/cisdijournal

108

This arrangement is functionally trivial until one of the ensuing criteria holds:
1. A companion virus changes the two INT 3h instructions into one INT 26h instruction.
2. A companion virus alters the vector table such that the INT 3h references INT26h.

In the event that one of the aforementioned criteria occurs, the attendant effect turns out to be exceptionally ruinous. Upon
invocation, the altered viral code will overwrite the first 256 of drives : to : making use of unconditional disc-write
command .

4. RECOGNITION OF VIRUS SIGNATURES

A basic method used in checking program files for infections starts with extracting recognition strings in familiar viral
programs. Such strings are typically denoted in hexadecimal notations and technically regarded as or
signatures. [12]. The hex patterns used to be between 10 and 16 characters in length with a very slight, limited probability of
finding a part of this in some clean and harmless program files. Data distribution in runnable program files are not
totally arbitrary, making it possible to find some order of statements constituting a viral program as part of a normal,
innocuous program file. It is a convention, however, to choose the signature of a viral program such that the probability of it
being found in an authentic, uninfected program file is nil, though this probability may fail. If a pattern checking program
reports a pattern match, it does not necessarily mean that a virus has been found, but that a virus may have been found.

4.1 Analysis of a viral Program
Upon the discovery of an infection, it is instructive to extract a signature for the purpose of examination, since analysis may be
of assistance to different locales having similar infection. Regardless of whether an infection is totally dissected instantly or
not, obtaining a is important in order to assist in recognizing events of a similar infection somewhere else. A
complete scrutiny of an infection naturally results in its total breakdown—analysing the construction and operation of the viral
program in order to recreate workings of the executable target code as remarked source statements. Analysis of a viral
program may be accomplished with DEBUG, a tool provided as a feature of MS-DOS.

4.2 Virus Disassembly
Analysing a viral program is a repetitive procedure that begins with determining what sections of the program contain data,
which are to be left intact in the analysis, as well as those that contain statements. Having determined this, the results of the
analysis are diverted to a sink that holds the dissected viral program. Figure 6 is an illustration of the order of DEBUG
constructs contained in a document called INSTR used for the analysis of a theoretical viral program held on a sink called
VIR.COM.

U 100 102
D 103 10F
U 110 432

Q

 Figure 6: Specimen sequence of DEBUG commands

Invoking DEBUG via the instruction , causes to act as the source file from
which the input is read, and as the sink holding the dissected results of the viral program, . Analysing a

 viral program may involve a fairly quite difficult process since they use larger areas than simply the
 Analysis of the boot sector should first be undertaken to determine other areas utilized by the viral program. The

technique for diverting the source and sink of DEBUG may equally be employed in the analysis of .

Suppose a viral program occupies sectors unreachable by DEBUG, as an example, hard disc bootstrap sector as programmed
in , an alternative method is to compose a few lines in low level program constructs, utilizing DEBUG, to
deliver proper (basic input output system) low-level commands to examine sectors being referred to. The sectors may be
output to a pipe, utilising DEBUG, or dissected promptly. The instructions sequence below, written using DEBUG, beginning
at memory address 100h scans the fixed disc into working storage utilizing BIOS low-level command INT 13h
function 02h. The ES:BX needs to reference the working storage address to store the contents of the disc for the BIOS
function to correctly operate. In the program listing of Fig. 7 on Intel machine or its classes, ES contains identical quantity
with DS while BX point at address 800h in the referenced data memory

MOV AX, DS
MOV ES, AX
MOV AX,0201 ; service 02h, 1 sector
MOV CX,0001 ; track 0, sector 1
MOV DX,0080 ; head 0, drive 0 (i.e., first hard disk)
MOV BX,0800
INT 13h ; BIOS routine
JMP 10E ; halt here

 Figure 7: Sample program listing of a virus disassembly process

 Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 5 No. 2. June 2014 – www.isteams.net/cisdijournal

109

Running the program in Fig. 7 by typing G 10E, inserting the program watch at address 10E, contents of address DS:0800 may
either be listed on the console or directly analysed. Encrypted viruses present a slightly greater challenge, because they must
be decrypted before they’re disassembled. At times, this can be a bit crafty, since the virus author might have made use of anti-
DEBUG measures as found in Cascade. Having converted the virus machine code to human readable, mnemonic form and
listed onto a sink, examination of the mnemonics would show the way viral program performs, the effect and the way it
spreads. An individual ought to naturally have accessible desktop computer documentation, which incorporates lists of
interrupts and then painstakingly work over the disassembly, noting statements, operating system communication signals as
well as working storage addresses. The representation should then begin to unfold. The self-reproducing portions of the viral
code are thus confined with its payload. Any payload trigger conditions must be examined thoroughly, because they are easily
misinterpreted.

After this process, a hex pattern can be extracted, which may be used to look for the virus; 16 bytes are usually enough, on the
condition that the hex pattern is cautiously picked in order that it is a representation of a reasonably distinctive statements
sequence, not likely present in any runnable program files.

4,3 Virus mutations and pattern-checking programs
Pattern-checking programs depend on looking for a pattern recognised to live within a virus. A version of a virus may be
maliciously programmed such that it would not be recognised by a pattern-checker. The sequence of instructions that are
independent, could be changed or an equivalent effect could be implemented by making use of various statements. For
instance:

Inside an infectious code might be rearranged as:

A string-matching program searching for the string generated through the initial statements list, wouldn’t
accept the changed order . At times, the mutations of a living virus will be very comprehensive that the
virus will bear only a small similarity to the first. drawn out of the first may not likely be within the later viral
code. The virus, [13], presents similar a vast alteration of , to the extent of being classified as a
different viral program.

4.4 Identification of a Dissected Virus
In order to establish a positive identification of a parasitic virus, set up a dirty PC and make two copies of the same
experimental executable. Infect one executable using the newly discovered virus and the other using the original virus. Run the
DOS COMP command. If there are no differences, the virus is the same as the one already captured. If differences are
discovered, the virus could still be the same, but it could be encrypted or self-modifying. This will have to be analysed more
closely using the method outlined in section 4.2.1. Boot sector viruses are similarly identified.

4.5 Managing Virus
Virus countermeasures can be broadly classified into two groups: proactive and reactive measures. Proactive measures
include the use of scanning and monitoring software—in the nature of
programs. A major drawback of these TSRs is that a well-written virus program may effortlessly circumvent or disable them.
The mechanism employed by TSRs [14] to divert secondary storage inputs and outputs, i.e., to vary the vectors in the
operating system’s table of communication signals, precisely mirrors the one employed in nearly all viral programs. In
addition, tracking process negatively impacts throughput and is quite incongruous with distributed applications, certain
software packages, etc.

Scanning software work on the principle of signature verification against known database collections. When a novel virus
emerges, it’s separated into its constituent parts for the purpose of examining each part while a distinctive hex string of
between 10 and 16 characters is saved to a databank. A tokenizer software then scrutinises all runnable program files on the
secondary storage as well as OS, including the bootstrap sector, matching their contents with identified malware patterns.
However, the demerits of such an approach is readily apparent: this sort of program is merely effective against identified
malware patterns. consequently, the database must frequently be refreshed with novel patterns upon the release of new
malware.

Another problem with the scanning software is the length of the virus pattern. If a short pattern is used, chances are that the
scanning software will produce a number of false positives, finding the pattern in completely innocuous software. If a long
pattern is used, false positives will be reduced, while incidence of false negatives will be on the increase since any mutation of
a virus will have a better chance of not matching the pattern. This is especially true of encrypted viruses. Most scanning
software is slow, although it is possible to speed the search for viruses by not looking at all locations, but only at the locations
known to be infected by a specific virus. Unfortunately, this complicates both the scanning software and the list of viruses,
which become more difficult to keep up to date and absolutely correct, thus increasing the risk of false negatives. It is because
of this that this approach may be found to be appropriate only in special circumstances.\

 Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 5 No. 2. June 2014 – www.isteams.net/cisdijournal

110

Reactive measures largely make use of checksumming algorithms. The idea is that calculation of a checksum is performed on
all executables on the computer then periodic recalculations are performed so as to be sure the fingerprint is intact. Should a
malware infect a runnable program, it will alter not less than one bit inside the program file; a situation that can give a totally
unrelated fingerprint. Even though this seems rather reactive, since a virus attack will be discovered after it happened, it could
be made proactive with slight adjustment in the implementation.

The condition here is that prior to performing the initial checksum calculations, all executables are assumed to be ‘clean’ that
is, virus-free. Installing all software from the manufacturers’ original disks after performing a hard format of the fixed disc can
do this. Then the checksumming algorithm is run on each of the executables to get a fingerprint or a digital signature of the
executable. These fingerprints or digital signatures are stored in a database or individually stored in the executable file’s
header. Prior to running an executable on the system, a similar checksum is performed on the executable file and then
compared with the initial checksum. A discrepancy in either of the checksums means that a virus has hit the executable. The
system may be programmed to take any action for instance, ringing the system bell for a specified length of time, displaying a
prompt in a particular font and colour or both, in order to alert the user. The system may then be shut down, as a way of
getting rid of the malware from the working storage, install a clean copy of the infected executable and another checksum of
the executable calculated and stored. This saves the system from being infected with a virus.

It is, however, assumed that the fingerprint algorithm is computationally intractable such that its results are not compromised
by a malware thus making it vulnerable to infection both in the short and long term. This requirement makes utilisation of a
cryptographically strong checksumming algorithm imperative, eliminating the other two approaches namely: simple
checksums and cyclic redundancy checks (CRCs). This assumption calls for the use of the so-called one-way trapdoor
function [15] because of its mathematical properties. The checksumming approach, as outlined here, happens to the singular
fail-safe approach that discover every malware, now and in the time ahead, deterministically. A relatively permanent plan for
malware defence is the use of a cryptographically strong checksum algorithm.

5. CONCLUSION

Proper documentation of all the known executable paths on a computer system formed an integral part of the methodology of
this paper. The design principle focused on both virus-specific and non-specific algorithms. While the concept of virus-
specific algorithms is appealing and somewhat straightforward in design, keeping the database of known virus patterns up-to-
date made the approach non-beneficial in the long term. Software solutions could be obsolete almost as soon as they were
procured because of the emergence of new viruses, or mutations of existing ones, on the scene. For a long-term foolproof
protection against present and future viruses, a virus non-specific algorithm is favoured. Though the design and
implementation were more rigorous and involved, the cost-benefit analysis more than justify these initial hurdles. A
determining factor in a real-life scenario, however, is the prevailing exigency.

REFERENCES

[1] Lance J. Hoffman, editor (1990). Rogue Programs: Viruses ,Worms, and Trojan Horses. VanNostrand Reinhold,

New York, NY.
[2] Leonard Adleman (1990). An abstract theory of computer viruses. In Lecture Notes in Computer Science, vol 403.

Springer-Verlag.
[3] Alan Solomon (1991). PC VIRUSES Detection, Analysis and Cure. Springer-Verlag, London.
[4] David Ferbrache (1992). A Pathology of Computer Viruses. Springer-Verlag.
[5] Eugene H. Spafford. An analysis of the internet worm. In C. Ghezzi and J. A. McDermid, editors, Proceedings of

the 2nd European Software Engineering Conference, pages 446–468. Springer-Verlag, September 1989.
[6] Peter J. Denning, editor (1990). Computers Under Attack: Intruders, Worms and Viruses. ACM Press (Addison-

Wesley).
[7] Donn Seeley (1990). Password cracking: A game of wits. Communications of the ACM, 32(6):700–703.
[8] Yisrael Radai (1991). Checksumming techniques for anti-viral purposes. 1st Virus Bulletin Conference, pages 39–

68.
[9] Brown, Ralf and Jim, Kyle (1991). PC Interrupts: A Programmer’s Reference to BIOS, DOS and Third Party Calls,

Addison-Wesley.
[10] Jan Hruska (1990). Computer Viruses and Anti-Virus Warfare. Ellis Horwood, Chichester, England.
[11] Eugene H. Spafford, et al (1989). Computer Viruses: Dealing with Electronic Vandalism and Programmed

Threats. ADAPSO, Arlington, VA.
[12] Eugene H. Spafford (1991). Computer viruses: A form of artificial life? In D. Farmer, C. Langton, S. Rasmussen,

and C. Taylor, editors, Artificial Life II, Studies in the Sciences of Complexity, pages 727–747. Addison-Wesley,
Redwood City, CA. Proceedings of the second conference on artificial life.

[13] Sandeep Kumar and Eugene H. Spafford (1992). A generic virus scanner in C++. In Proceedings of the 8th
Computer Security Applications Conference, pages 210–219, Los Alamitos CA. ACM and IEEE, IEEE Press.

[14] Duncan Ray, Editor (1988). The MS-DOS Encyclopaedia. Microsoft Press.
[15] Odule Tola John (2007). Incremental Cryptography and Security of Public Hash Functions. Journal of the Nigerian

Association of Mathematical Physics, 11, 467-474.

