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ABSTRACT 
 
This research sets out to exploredthe application of Deep learning models in image captioning.. 
Our intention is to investigated how to accurately automatically generate captions as  compared 
to other previous studies the efficiency of the work. Deep learning uses algorithms and complex 
data sets in enormous datasets. We provide a brief overview of some of the most significant 
deep learning schemes used in computer vision problems, that is, Convolutional Neural 
Networks and others.  Our future work will explore  Chest X-rays and COVID-19 radiography 
datasets from Indiana State University and Qatar University respectively to implementr the 
research objectives 
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1. Background of study 
 

Machine learning has recently seen some significant advancements, piquing the interest of 
industry, academia, and popular culture. Artificial neural networks, which are used in deep 
learning, are a set of techniques and algorithms that enable computers to learn.  In order to find 
complex patterns in enormous data sets. Increased funding is fueling the advances of Big data 
access, user-friendly software frameworks, and an explosion of available data computational 
capacity, allowing for the implementation of deeper neural networks than ever before. These  
architectures used to build AI Models are now the state-of-the-art approach to a wide range of 
computer problems such as Robotics, vision, and language modeling.  
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When neural networks began outperforming other methods on several high-profile image 
analysis benchmarks, deep learning rose to prominence in computer vision. The most well-
known deep learning model (a convolutional neural network) halved the second-best error rate 
on the image classification task on the ImageNet Large-Scale Visual Recognition Challenge 
(ILSVRC)1 in 2012 (Brody, 2013). 
 
Until recently, enabling computers to recognize things in natural photographs was thought to be 
a challenging problem, but convolutional neural networks have now outperformed even human 
performance on the ILSVRC, and have basically solved the ILSVRC classification test (i.e. with 
error rate close to the Bayes rate). The most recent ILSVRC competition took place in 2017, and 
computer vision research has moved on to increasingly demanding benchmark tasks since then. 
Consider the COCO (Common Objects in Context Challenge) (Shao et al., 2014). 
 
1.1 X-rays and Ultrasound Scns  
Globally, basic x-ray and ultrasound examination can resolve 70 to 80 percent of the world's 
diagnostic problems (Mitchell and https://www.facebook.com/pahowho, 2012). Diagnostic 
imaging is simply a method of diagnosing a patient by capturing and analyzing their visual 
content in the form of images. This method allows doctors to guess clues about a medical 
condition from inside your body. There are many different types of diagnostic imaging, but the 
most common ones used on a daily basis are X-rays, CT scans, and MRI scans. Text is usually 
included with images to avoid misinterpretation. Image captioning is the textual description of 
an image (Radhakrishnan, 2017). A single image can represent a plethora of messages. As a 
result, image captioning is a critical concept that is equally important in the diagnostic imaging 
aspect of the medical field. In recent years, hospitals have developed well-known areas of 
specialization. Some of these hospitals have more than one area of specialization, while others 
only have one, but they still provide treatment or medical services in areas other than their 
known area of specialization.  
 
Regardless of the different approaches to treating various illnesses, all hospitals have a set 
standard that patients must follow in order to be diagnosed and treated. Among the many 
departments at the hospital are the Out-Patient Department, the Consulting Unit, the Laboratory, 
the Theater, and the Dispensary (Yonzon, n.d.). Depending on the patient's insurance or 
payment method, as well as their illness, they may have to visit at least three departments 
before receiving treatment. In addition, depending on the patient's problems, they may be 
required to undergo laboratory tests or scans to assist the doctor in making a proper diagnosis.  
 
Each time a patient requires a diagnosis, it is almost certain that they will undergo a laboratory 
test or a scan. It has been observed that scans are normally analyzed by doctors and patients 
are treated. The results of those scans could be structured in such a way that if a similar case 
occurs in a different patient who has previously been treated, they can treat it faster for the new 
patient. 
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2. RELATED LITERATURE  
 
2.1 Deep learning Methods 
Deep learning methods are extremely effective when there are a large number of available 
samples during the training stage. For example, more than one million annotated images were 
available in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et 
al., 2015). In most medical applications, however, there are far fewer images (i.e., 1,000). As a 
result, one of the most significant challenges in applying deep learning to medical images is the 
limited number of training samples available to build deep models without overfitting. To 
address this issue, research groups have devised a variety of strategies, including (a) using 
image patches rather than full-sized images as input (Cheng et al., 2016) to reduce input 
dimensionality and thus the number of model parameters; (b) expanding the data set by 
artificially generating samples via affine transformation (i.e., data augmentation), and then 
training their network from scratch with data augmentation. (c) using "off-the-shelf" feature 
extractors trained on a large number of natural images in computer vision, and then training the 
final classifier or output layer with the target-task samples (Ciompi et al., 2015); (d) initializing 
model parameters with those of pretrained models from nonmedical or natural images, and 
then fine-tuning the network parameters with task-related samples (Gupta et al., n.d.); and (e) 
using models trained with small-sized inputs for arbitrarily sized inference (Gupta et al., n.d.). 
 
2.2 Related Works 
Keras Image Captioning by Harshall Lamba: He used flicker 8k photos as the dataset in this 
experiment. He had 5 captions for each photograph, which he saved in a dictionary. He cleaned 
the data by making all words lowercase, removing special tokens, and removing terms with 
numbers (such as 'hey199', etc.). He excluded any words with a frequency of less than 10 in the 
entire corpus after extracting unique words so that the model might be robust to outliers. Each 
caption now has "startseq" and "endseq" added to it. He used the inception v3 model with Image 
net dataset weights to preprocess the photos. This model was fed images, and the output of the 
second last layer (2048 size vector). 
 
Attention Mechanism Image Captioning | by Subham Sarkar | The Business: For image 
captioning, he exploited the attention mechanism. As before, the dataset used was flickr8k. The 
train size was 6000 photos, the validation data was 1000 images, and the test data was 1000 
images. He deleted punctuation, numeric values, and single characters before preprocessing. 
After that, he makes a dataframe with the columns filename and captions. Before feeding each 
image to the ImageNet VGG-16 model, he reshaped it into 224*224*3. Only the convolutional 
component is included here (include top=False). He took the output from the second last layer 
as backbone features and eliminated the last dense layer. 
  
Using deep convolutional networks, (Roth et al., 2015) proposed a method for organ- or body-
part-specific anatomical classification of medical pictures. They used 4,298 axial 2D CT scans 
to train their deep network to learn five sections of the body: the neck, lungs, liver, pelvis, and 
legs. Their research yielded a 5.9% anatomy-specific classification error and a 0.998 average 
AUC (area under the receiver-operating characteristic curve). However, in real-world 
applications, finer separation than that used for merely five body components may be required 
(e.g., they may need to distinguish aortic arch from cardiac sections). 
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Yan et al., (2015) developed a multistate deep learning framework using a CNN to identify the 
body portion of a transversal slice to overcome this restriction. Because each slice may contain 
many organs (contained in bounding boxes), the CNN was trained in a multi-instance method 
(Maron and Lozano-Pérez, 1998), with the objective function changed so that the associated 
slice was considered right as long as one organ was properly classified. As a result, the CNN was 
sensitive to the discriminative boundary boxes before it was trained. To improve the 
representation power of the pretrained CNN, discriminative and noninformative bounding boxes 
were chosen based on the answers of the pretrained CNN. To apply the boosted CNN to the 
subject image at run time, a sliding-window technique was used. Because the CNN only had 
peaky responses on discriminative bounding boxes, it was able to identify body parts by 
concentrating on the most unique local information. This local technique proved more accurate 
and robust than global image context-based alternatives. The authors' body part recognition 
approach was evaluated on 12 body parts across 7,489 CT slices from 675 patients ranging in 
age from 1 to 90 years old. The data was separated into three categories: 2,413 people (225 
patients) were enrolled in the training program.  656 (56 patients) for validation, and 4,043 
(394 patients) for testing. 
 
Cireşan et al., (2013) employed a deep CNN to detect mitosis in breast cancer histology images 
in a groundbreaking study. Their networks were trained to categorize each pixel in the photos 
using a patch centered on the pixel as a starting point. Their technique took first place in the 
Mitosis Detection Contest at the 2012 International Conference on Pattern Recognition (ICPR), 
4 beating the other competitors by a large margin. Since then, several groups have applied 
various deep learning approaches for histology image detection. For example, (Xu et al., 2016) 
employed an SAE to detect cells on histological pictures of breast cancer. To boost robustness 
to outliers and disturbances, they used a denoising auto-encoder to train their deep model. Su 
et al. (Su et al., 2015) detected and segmented cells from microscopic pictures using an SAE 
and sparse representation. To detect and classify nuclei in histopathology images, 
Sirinukunwattana et al. (100) proposed a spatially constrained CNN (SC-CNN). They employed a 
SC-CNN to estimate the likelihood of a pixel being the nucleus's center, with pixels with high 
probability values spatially limited to be in the vicinity of nuclei's centers. 
 
Moeskops et al. (NCBI, 2019) developed a multiscale CNN to improve the robustness and spatial 
consistency of newborn picture segmentation. To obtain multiscale information about each 
voxel, their network used different patch sizes and numerous convolution kernel sizes. The 
authors achieved encouraging segmentation results for eight tissue types using this strategy, 
with a Dice ratio6 ranging from 0.82 to 0.91 across five separate data sets. 
 
On the basis of multimodal MR images, (Zhang et al., 2015) created four CNN architectures to 
segment newborn brain tissues. Each CNN has three input feature maps, each corresponding 
to 1313 voxels of T1-weighted, T2-weighted, and fractional anisotropy (FA) image patches. The 
scientists applied three convolutional layers and one fully connected layer to each CNN, followed 
by a tissue classification output layer with a softmax function. These CNNs beat rival approaches 
on a collection of manually segmented isointense-phase brain pictures.  
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Pereira et al., (2016) used CNNs in MR images to analyze brain tumor segmentation. They 
looked into small kernels to see whether they could have fewer parameters but deeper 
architectures. They trained several CNN architectures for low- and high-grade tumors and 
verified their method in the 2013 Brain Tumor Segmentation (BRATS) Challenge7, where their 
method rated first in the full, core, and enhancing regions for the challenge data set. (Brosch et 
al., 2016) used MR images to segment multiple sclerosis lesions using deep learning. 
 
Brosch et al (2016) used MR images to segment multiple sclerosis lesions using deep learning. 
Their model was a three-dimensional CNN made up of two interconnected pathways: a 
convolutional pathway that learned hierarchical feature representations similar to those learned 
by other CNNs, and a deconvolutional pathway made up of deconvolutional and unpooling layers 
with shortcut connections to the corresponding convolutional layers. The deconvolutional layers 
were created to generate abstract segmentation features from the data provided by each 
convolutional layer, as well as, if relevant, the activation of the previous deconvolutional layer. 
This technique performed the best in terms of Dice similarity coefficient, absolution volume 
difference, and lesion false-positive rate when compared to five publicly accessible algorithms 
for multiple sclerosis lesion segmentation. 
 
To distinguish breast ultrasound lesions from lung CT nodules, Cheng et al. (Nih.gov, 2019) 
utilized an SAE with a denoising approach (SDAE). The image areas of interest (ROIs) were 
initially scaled to 2828 pixels, with all pixels in each patch being considered as the SDAE's input. 
To improve their model's noise tolerance, the authors contaminated the input patches with 
random noise during the pre training step. They later added the resized scale factors of the two 
ROI dimensions, as well as the aspect ratios of the original ROIs, during the fine-tuning process 
to preserve the original information. 
 
To capture different sizes of lung nodules, Shen et al. (Shen et al., 2015) constructed a 
hierarchical learning architecture using a multiscale CNN. Three CNNs were formed in tandem 
in this CNN architecture, each taking nodule patches from various scales as input. The authors 
adjusted the parameters of the three CNNs to be shared during training to reduce overfitting. A 
feature vector was created by concatenating the activations of the top hidden layer in three 
CNNs, one for each scale. The authors utilized a random forest and an SVM with a radial basis 
function kernel for classification. The random forest was trained to minimize partner objectives, 
which are defined as the sum of the overall hinge loss function and the total of the companion 
hinge loss functions. (Gönen and Alpaydın, 2011) 
 
Suk et al. (31) employed an SAE to combine neuroimaging and biochemical variables to 
determine Alzheimer's disease or moderate cognitive impairment. They used MR images to 
extract GM volume features, PET images to extract regional mean intensity values, and CSF to 
extract three biological features (A42, p-tau, and t-tau). They created an augmented feature 
vector for each modality by concatenating the original features with the outputs of the top hidden 
layer of the relevant SAEs after training modality-specific SAEs. For clinical decision making, a 
multikernel SVM (Suk, Lee and Shen, 2013) was trained. The same researchers went on to find 
hierarchical feature representations by mixing diverse modalities during feature representation 
learning rather than during the classifier learning step (Suk, Lee and Shen, 2014). 
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Figure 1 Shared feature learning from patches of different modalities 

 
The shared feature learning from patches of different modalities, such as magnetic resonance 
imaging (MRI) and positron emission tomography (PET), with a discriminative multimodal deep 
Boltzmann machine (DBM) are shown in Figure 1. The yellow circles represent the input patches, 
and the blue circles show joint feature representation. (b,c) Visualization of the learned weights 
in Gaussian restricted Boltzmann machines (RBMs) (bottom) and those of the first hidden layer 
(top) from MRI and PET pathways in a multimodal DBM (Suk, Lee and Shen, 2014). Each 
column, with 11 patches in the upper block and the lower block, composes a three-dimensional 
patch. 
  

 
 

Figure 2 The architecture of the fully convolutional network used for tissue segmentation  
(Nie et al., 2019) 
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·Nie et al., 2019) proposed using multiple fully convolutional networks (mFCNs) (Figure 8) to 
segment isointense-phase brain pictures with T1-weighted, T2-weighted, and FA modality 
information to segment isointense-phase brain images. They used a deep architecture to 
efficiently fuse high-level information from all three modalities, rather than just merging three-
modality data from the original (low-level) feature maps.  They thought that high-level 
representations from various modalities were mutually beneficial. To successfully exploit 
information from various modalities, the scientists first trained one network for each modality; 
second, they combined multiple-modality features from each network's high layer (Figure 8). In 
these tests, the mFCNs outperformed fully convolutional networks and other competing 
approaches, achieving average Dice ratios of 0.852 for CSF, 0.873 for GM, and 0.887 for WM 
from eight patients. 
 
3. RESEARCH THRUST  
 
3.1 Problem Statement 
Billions of diagnostic images are generated every day, and all of these images must be analyzed 
by doctors or radiologists after they are generated. Unfortunately, a hospital is a space that must 
operate twenty-four hours a day; however, the humans who run the department, such as doctors 
and radiologists, are incapable of operating twenty-four hours a day productively or effectively. 
Any kind of break or gap in a department can have a significant impact on overall labor efficiency 
and human lives. Diagnostic imaging services, for example, have a significant impact on public 
health and can eventually reduce infant mortality rates or increase rate of detection of cancer 
and tumors. 
 
3.2 Field and subject Area of Study 
The field of study is in Computer Science and the subject area of study is under application of 
deep learning in image capturing for medical diagnosis. This concept is a subset of machine 
learning and artificial intelligence. 
 
3.3 Aim- General Objective of Study 
The overall aim of this study is to increase the accuracy of automatic image captioner for 
diagnostic image and subsequently confirm the best architecture for implementing automatic 
captioner that describes images into sentences by employing computer vision and natural 
language. 
  
3.4 Specific Objectives 
1. The model should be able to work with medical images and reports  
2. The model should be able tell the best architecture with high accuracy 
3. The model should be able to analyze and accurately automatically generate captions for the 
chest x-ray imaging. 
 
3.5 Significances of Study 
1. Increasing the accuracy of the system will save lives 
2.The image captioning can speed up the diagnosis process 
3. Reports can be used for other further task like  
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4. CONCLUDING REMARKS AND DIRECTION FOR FUTURE WORKS  
 
In this study, we will be using chest x-ray images and reports from (Chempolil, 2021) and COVID-
19 radiography. The idea is to train an AI model using the images as our dataset. This model will 
take the images as input, analyze and generate captions or reports. The results from these 
images will be compared with the known reports as a way to determine the accuracy of the 
model. The level of accuracy will justify deep learning use in image captioning as a way of 
automation to speed up the medical diagnosis process. 
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