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ABSTRACTABSTRACTABSTRACTABSTRACT  

The Internet of Things (IoT) has proven to be a veritable systems approach to the problem of ubiquitous or 

everyday computing services. This paper presents an idea of using machine intelligence, in a predictive 

Collaborative Web of Things real time control platform called pCWoT-MOBILE, which enables web 

based technology to be deployed in smart spaces using a pervasive predictive and persuasive framework. 

We introduce some important performance criteria for evaluating our proposed system. We also show how 

our system can be applied as a Collaborative Real Time Control (CRTC) device in a smart space. 

 

    KeyKeyKeyKeywords: words: words: words: Machine Intelligence, pCWoT, Predictive Real Time Control, Smart Space, Web of Things.    

    

    

1. BACKGROUND 1. BACKGROUND 1. BACKGROUND 1. BACKGROUND     

 

 The Internet of Things (IoT) industry represents an important area of the application of the information 

age in the society. The industry currently boast of over 1 billion connected IoT devices worldwide, which 

goes to say that it has come of age. In the academia and industry, there has been renewed interest in 

researching better models of smart spaces, particularly as it applies to mobile IoT devices and how they can 

be of very good use in varied number of human and artificially generated tasks. However, this interest is 

challenged by a number of factors several of which include the cost of operating these devices, integration 

requirements, switching time, throughput and other mobility/security considerations. Current interests 

specifically focus on adapting miniature networks of digital electronic components for web-based online 

things as a service which is good as long as they remain cost-effective, do not lead to service downtimes and 

are able to infer what happens next; it is therefore worth desirous that we should be able to develop systems 

that can be useful in this sense. 
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2. PREVIOUS WORK 2. PREVIOUS WORK 2. PREVIOUS WORK 2. PREVIOUS WORK     

The research in the area of Internet of Things (IoT) solutions has been considered somewhat arbitrarily. 

For instance in the following works (Ambroz, 2017; Martin(Ambroz, 2017; Martin(Ambroz, 2017; Martin(Ambroz, 2017; Martin----Garin et al, 2018)Garin et al, 2018)Garin et al, 2018)Garin et al, 2018), the focus has been on cost 

effectiveness while on the other hand there have been in a need for security features in IoT device 

architectures in smart Home Automation Systems (HAS) and production systems (Jacobsson et al, 2016; (Jacobsson et al, 2016; (Jacobsson et al, 2016; (Jacobsson et al, 2016; 

Tomiyama & Moyen, 2018)Tomiyama & Moyen, 2018)Tomiyama & Moyen, 2018)Tomiyama & Moyen, 2018). In (Onukwugha & Osuagwu, 2014)(Onukwugha & Osuagwu, 2014)(Onukwugha & Osuagwu, 2014)(Onukwugha & Osuagwu, 2014), an end-user programming model was 

proposed for mobile smart spaces. 

 

In the field of Short Messaging Service (SMS) for real-time control of devices over the air , smart SMS 

control solutions have been conducted in (Onukwugha & Asagba, 2014)(Onukwugha & Asagba, 2014)(Onukwugha & Asagba, 2014)(Onukwugha & Asagba, 2014) and using genetic optimizer in 

(Osegi & Enyindah, 2014)(Osegi & Enyindah, 2014)(Osegi & Enyindah, 2014)(Osegi & Enyindah, 2014) with promising results. However, these techniques have the drawback of SMS 

delivery delay and compatibility problems with the internet due to diversity of SMS operator 

requirements/restrictions.  

 

More recently, there has been an increasing call for implementing control and decision making systems with 

intelligent capabilities (Vujovic & Maksimovic, 2015)(Vujovic & Maksimovic, 2015)(Vujovic & Maksimovic, 2015)(Vujovic & Maksimovic, 2015). Such systems provide the benefits of IoT technology 

and Artificial or Machine Intelligence (AM-I). However, there still remain a gap to be filled on the ability of 

such systems to continually make predictions on the possible outcomes or decisions that should follow 

through time and space. 

 

In this paper, we propose the predictive Collaborative Web of Things (pCWoT) as a candidate prototype 

smart and IoT capable solution to this important requirement. We show through demonstration 

simulations how this prototype system can be applied in a real world scenario and set forth the direction for 

future designs of such systems. 

 

3. STATEMENT OF PROBLEM3. STATEMENT OF PROBLEM3. STATEMENT OF PROBLEM3. STATEMENT OF PROBLEM    

The current industry is faced with the challenge of defining adequate smart space models that can allow for 

a consensus to be arrived at given a number of separate decision making smart space sensor broadcast 

networks. For instance, if we consider the problem agreeing on the required number of taxis coming in and 

leaving a metropolis given a number of separate broadcast reports, a logical solution may be to compute the 

average of these broadcasts. As another example, consider a group of weather monitoring/broadcast stations 

specifically required to report the temperature of a given location say Zone A using their respective 

proprietary instruments; it is also required that these reports be continually made available on the internet. 

The problem may be cast as follows: 

 How can one predictively arrive at a temperature consensus given the different temperature readings? 

Another requirement is the need for web based solutions rather than just internet solutions as the devices 

may operate through an internet. 

 

4. RESEARCH OBJECTIVE4. RESEARCH OBJECTIVE4. RESEARCH OBJECTIVE4. RESEARCH OBJECTIVE    

It is the objective of this research to describe a model-based approach that seeks to provide an answer to the 

aforementioned problem in the previous section. Stated in clear terms, we seek to develop an effective 

predictive systems model of a collaborative web of things network (pCWoT) for temperature monitoring 

and control in the smart space and in addition evaluate its performance using several performance metrics. 
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5. METHODOLOGY5. METHODOLOGY5. METHODOLOGY5. METHODOLOGY    

5.1 Systems model of the Predictive Collaborative Web of Things Network (pCWoT)5.1 Systems model of the Predictive Collaborative Web of Things Network (pCWoT)5.1 Systems model of the Predictive Collaborative Web of Things Network (pCWoT)5.1 Systems model of the Predictive Collaborative Web of Things Network (pCWoT)    

A pCWT network is as shown in the flow diagram of Fig.1. It consists primarily of several Broadcast Data 

Units (BDU), Predictor Processor Units (PPU), and a Monitoring and Control Unit (MCU). The first two 

main processes are handled by a neural processing algorithm in the cloud while the last process is 

performed by an embedded microcomputer (actually a microcontroller with detailed circuitry).  

 

Monitoring and decision making is taking care of by the embedded micro-computer after correctly 

decoding the predicted signals from a HTML/XML service with the neural algorithm as back-end.  

 

This idea of using the neural approach  is motivated by the need of a machine intelligent systems solution 

with inherent predictive capabilities for remote collaborative processing; the approach used here  is adapted 

from the original research earlier carried out in (Osegi & Anireh, 2016)(Osegi & Anireh, 2016)(Osegi & Anireh, 2016)(Osegi & Anireh, 2016) using a novel neural predictive 

framework based on an Auditory Machine Intelligence (AMI) algorithm and inspired by neuroscience and 

biology – this algorithm was initially referred to as the Deviant Learning Algorithm (DLA). However, in the 

case of this research, we use a simpler neural network computing architectural concept that harnesses the 

potential of state transitions (Wacogne et al., 2012)(Wacogne et al., 2012)(Wacogne et al., 2012)(Wacogne et al., 2012); this concept is briefly described in a succinct way and 

manner in the Appendix for readers who may wish to reproduce some of the results obtained here or apply 

the technique to other domain of applications.  

 

5.1.1 Web Server Architecture5.1.1 Web Server Architecture5.1.1 Web Server Architecture5.1.1 Web Server Architecture    

    

As a cloud computing model, p-CWoT needs to communicate to hardware remotely via a web server. Fig.2 

describes architecture of this concept. In this illustration, a mobile Internet Service Provider (ISP) services 

internet requests to a host server which coordinates a PHP MyAdmin database and an Apache web service. 

A HTML front-end allows for end user interactivity while an XML layer adds an adaptive coding interface 

to prediction signals generated by the AMI algorithm in the cloud and eventually stored in control data 

storage for real time access using a p-CWoT capable device. 
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Fig.1: A Predictive Collaborative Web of Things Network (pCWoT)Fig.1: A Predictive Collaborative Web of Things Network (pCWoT)Fig.1: A Predictive Collaborative Web of Things Network (pCWoT)Fig.1: A Predictive Collaborative Web of Things Network (pCWoT)    
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Fig.Fig.Fig.Fig.    2: Web2: Web2: Web2: Web----server Architecture of the pCWoT franeworkserver Architecture of the pCWoT franeworkserver Architecture of the pCWoT franeworkserver Architecture of the pCWoT franework    

    

    

5.2 Activity5.2 Activity5.2 Activity5.2 Activity----Performance Criteria for MobilityPerformance Criteria for MobilityPerformance Criteria for MobilityPerformance Criteria for Mobility    

The pCWT uses a set of activity-performance criteria to evaluate whether or not it does desired function on 

time and with minimal failure mode due to lost signals. This subsection presents some of the key 

performance measures used in this research study. In developing this formal set of criteria, we borrow some 

of the models used from the study of Cognitive Radio Networks (CRNs) as earlier presented in 

(Esmaeelzadeh et al., 2013). We define our prototype pCWoT device as a sensor node that can participate 

in data communication and signal processing activities 

 

5.2.1 Node Activity5.2.1 Node Activity5.2.1 Node Activity5.2.1 Node Activity    

To model sensor node activity, we use the Markovian death/birth ON/OFF process to determine the level 

of connectedness to a Web of Things (WoT) service as in Eq.1: 

disconcon

con

active
rr

r
N

+
=         (1) 

where,  

conr = connection frequency of the Sensor Node  

disconr = disconnection frequency of the Sensor Node 

 

5.2.2 Sensing Accuracy Activity5.2.2 Sensing Accuracy Activity5.2.2 Sensing Accuracy Activity5.2.2 Sensing Accuracy Activity    

Here we follow a somewhat different approach from that used in (Esmaeelzadeh et al., 2013) that is easier 

to interpret. We define the sensing accuracy as the number of correctly decoded control (prediction) signals 

obtained from a sample of transmitted signals for a given transmission duration. 

100∗








+
=

incorrectcorrect

correct

accuracy
nn

n
S       (2) 

where,  

correctn  = number of correctly decoded prediction signals 

incorrectn = number of incorrectly decoded prediction signals 
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5.2.3 Throughput Performance5.2.3 Throughput Performance5.2.3 Throughput Performance5.2.3 Throughput Performance    

The throughput defines a data bit-time ratio. Here we define the throughput as the number of correctly 

decoded prediction signals that actually terminate successfully at the sensor node: 

 

 















+
=

firstlast

correct

throughput
tt

n
S        (3) 

where,  

firstt  = receive time of the first correctly decoded prediction signal at the sensor node. 

lastt   = receive time of the last correctly decoded prediction signal at the sensor node. 

 

5.2.4 Data packet delay5.2.4 Data packet delay5.2.4 Data packet delay5.2.4 Data packet delay    

This describes how long it takes the correctly decoded prediction signals to terminate successfully at the 

sensor node: 

 

 









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
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N
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where,  
r

it  = receive time of the i
th

 correctly decoded prediction signal at the sensor node. 

pN   = correctn . 

 

5.3 Physical Computing Control Model of the Predictive Collaborative 5.3 Physical Computing Control Model of the Predictive Collaborative 5.3 Physical Computing Control Model of the Predictive Collaborative 5.3 Physical Computing Control Model of the Predictive Collaborative Web of Things (pCWT) deviceWeb of Things (pCWT) deviceWeb of Things (pCWT) deviceWeb of Things (pCWT) device    

A prototype physical computing model concept of the proposed pCWT network device comprising 

primarily of an embedded microcomputer (uC1), a communication device (CC1), and an actuator (A1) is as 

shown in Fig.3. The embedded microcomputer is based on the Arduino microcomputer which uses the 

Atmega328P microcontroller device.  The job of the embedded microcomputer is to coordinate the 

activities of the communication device and the actuator based on some already predefined sequence of 

coded program instructions (firmware). The communication device uses a GSM shield with the major 

interface lines (in blue) connected as shown. The Arduino microcomputer sends commands (control 

signals) to the servo motor which in turn can be used to operate (start/or stop) a process. A smart 

communication architecture and microcomputer firmware flow diagram for smart communication with a 

pCWoT device system is as illustrated in Fig.4 and 5 respectively. 

 

 



  

 

 

243 

11th International Science, Technology, Arts,  Education, 

Management  & the Social Sciences Conference 

Lagos, Nigeria, June,  2018

Book of Proceedings Vol 13 Series 2Book of Proceedings Vol 13 Series 2Book of Proceedings Vol 13 Series 2Book of Proceedings Vol 13 Series 2

 
Fig.Fig.Fig.Fig.    3: A prototype physical computing model co3: A prototype physical computing model co3: A prototype physical computing model co3: A prototype physical computing model concept of a pCWoT devicencept of a pCWoT devicencept of a pCWoT devicencept of a pCWoT device    

 

 
 

 

Fig.Fig.Fig.Fig.    4: Smart communication architecture of a pCWoT device system4: Smart communication architecture of a pCWoT device system4: Smart communication architecture of a pCWoT device system4: Smart communication architecture of a pCWoT device system    
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Fig.5: Smart communication firmware of a pCWoT device systemFig.5: Smart communication firmware of a pCWoT device systemFig.5: Smart communication firmware of a pCWoT device systemFig.5: Smart communication firmware of a pCWoT device system    
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6. EXPERIMENTAL SIMULATION DETAILS, RESULTS6. EXPERIMENTAL SIMULATION DETAILS, RESULTS6. EXPERIMENTAL SIMULATION DETAILS, RESULTS6. EXPERIMENTAL SIMULATION DETAILS, RESULTS    

The simulated experiments are conducted using the concept of a real-time prototype predictive 

Collaborative Web of Things (pcOWT) systems model developed in the earlier sections. Initial 

experiments are demonstrated using open source tools such as Arduino, Processing and Wiring (Banzi, (Banzi, (Banzi, (Banzi, 

2009; Margolis &2009; Margolis &2009; Margolis &2009; Margolis &    Weldin, 2011; Barragan, 2004; Severance, 2011)Weldin, 2011; Barragan, 2004; Severance, 2011)Weldin, 2011; Barragan, 2004; Severance, 2011)Weldin, 2011; Barragan, 2004; Severance, 2011) and a prediction tool for Auditory 

Machine Intelligence (AMI) built in the PHP languagge. A sample data is presented in Table1. These data 

are a subset of temperature readings taken at 10min intervals; these readings may be conducted for the first 

day of the week and from 9:.00a.m to 12:00noon. Embedded code developed in Arduino C++ using the 

Ardino IDE and real time results using the aforementioned metrics are presented as a supplementary 

material; data simulations are presented here for comprehension. 

 

Table1. Data for analysisTable1. Data for analysisTable1. Data for analysisTable1. Data for analysis    

 

s/n Weather Station 1  Weather Station 2  Weather Station 3  

_____________________________________________________________________________________

_____ 

1  25    26    29 

2  25    26    29 

3  27    27    26 

4  25    26    29 

5  25    26    29 

6  25    26    29 

7  25    26    29 

 

    

6.1 Task6.1 Task6.1 Task6.1 Task    

We revisit the task of controlling a water chiller/heater system earlier described in (Osegi et al., 2017)(Osegi et al., 2017)(Osegi et al., 2017)(Osegi et al., 2017). The 

goal is to continually predict the single temperature from 3 hypothetical weather stations and use the 

predicted temperature for controlling the operation of the steering arm of an over-temperature 

electromechanical device implemented as a servo.  

 

6.2 Data Simulation Results and Discussions6.2 Data Simulation Results and Discussions6.2 Data Simulation Results and Discussions6.2 Data Simulation Results and Discussions    

Simulations using the sample data are as shown in Fig1-3 corresponding to weather station 1-3. The 

simulation plots are performed with a forecast horizon set to 4 and a back-step parameter set to 0.  The first 

plot (Fig.1) is the weather station 1 time series data for training the AMI algorithm and the last two the 

deviant continual and look-ahead predictions respectively. From the last two plots, it is obvious that there 

will probably be an increase in the prediction temperature coming from weather station 1. The second and 

third plots (Figures 2 and 3) are the results for weather station 2 and 3 respectively. These results are similar 

to that obtained using the first dataset, however, there is a slight increase in prediction values which 

interestingly is indicative of the increases in the original time series values. 
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Fig.1: The AMI algorithm continual and lookFig.1: The AMI algorithm continual and lookFig.1: The AMI algorithm continual and lookFig.1: The AMI algorithm continual and look----ahead predictions for Weather station 1 sample dataahead predictions for Weather station 1 sample dataahead predictions for Weather station 1 sample dataahead predictions for Weather station 1 sample data    

    

    
    

Fig.2: The AMI algorithm continual and lookFig.2: The AMI algorithm continual and lookFig.2: The AMI algorithm continual and lookFig.2: The AMI algorithm continual and look----ahead predictions for Weather station 2 samplahead predictions for Weather station 2 samplahead predictions for Weather station 2 samplahead predictions for Weather station 2 sample datae datae datae data    

    

    

    

    

    



  

 

 

247 

11th International Science, Technology, Arts,  Education, 

Management  & the Social Sciences Conference 

Lagos, Nigeria, June,  2018

Book of Proceedings Vol 13 Series 2Book of Proceedings Vol 13 Series 2Book of Proceedings Vol 13 Series 2Book of Proceedings Vol 13 Series 2

    

 
 

Fig.Fig.Fig.Fig.    3: The AMI algorithm continual and look3: The AMI algorithm continual and look3: The AMI algorithm continual and look3: The AMI algorithm continual and look----ahead predictions for Weather station 3 sample dataahead predictions for Weather station 3 sample dataahead predictions for Weather station 3 sample dataahead predictions for Weather station 3 sample data    

    

    

7. CONCLUSION7. CONCLUSION7. CONCLUSION7. CONCLUSION    

 

The Internet of Things (iOTs) present an obvious challenge to iOT researchers, industry experts and 

players alike one of which is the smart and intelligent generation and interpretation of agreeable set of 

results for control and decision making. We have presented an approach and pragmatic modelling tool 

called p-CWoT, in the context of a predictive and Collaborative Web of Things framework. Currently, this 

is work in progress and experiments are being conducted on real hardware. Some directions for furthering 

this work may include the integration of miniature swarm intelligence and evolutionary algorithms to assure 

a global optimization space and allow for a more robust intelligent decision making scheme.  It is hoped 

that this ideas of ours can serve as an area for research and deep consideration by the academia and more 

importantly as a prototype model for industry players wishing to deploy the pCWOT technology in their 

area of operations. 

 

8. CONTRIBUTIONS TO KNOWLEDGE 8. CONTRIBUTIONS TO KNOWLEDGE 8. CONTRIBUTIONS TO KNOWLEDGE 8. CONTRIBUTIONS TO KNOWLEDGE  

 

This research study has made the following original contributions: 

• The development of a predictive Collaborative Web of Things (pCWoT) model for real-time 

control. 

• The enhancement and validation of several performance metrics for evaluating the 

aforementioned. 
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APPENDIX:APPENDIX:APPENDIX:APPENDIX: Mathematical Model of Auditory Machine Intelligence (AMI) algorithm (PhaseMathematical Model of Auditory Machine Intelligence (AMI) algorithm (PhaseMathematical Model of Auditory Machine Intelligence (AMI) algorithm (PhaseMathematical Model of Auditory Machine Intelligence (AMI) algorithm (Phase----1 only)1 only)1 only)1 only)    

 

Consider an initial input-output data set that may change through time as,  

{ }nn SSSS ,,, 21 L=  for n-time steps of the observer. 

We shall call this set the ‘evoked potential’ set or simply the EP; this set will contain sequences of standard 

signals and a deviant signal; the standards and deviant signal in turn gives a mismatch prediction 

accomplished by a deviant mismatch operation between both classes of signals.  

Predictions in the AMI algorithm occur in two phases: 

Phase-1 – low level pre-prediction phase 

Phase-2 – high level post-prediction phase. 

In this document, we mathematically analyse only the first phase of this algorithm. 

Prior to our analysis, we make the following assumptions: 

• Real world observations are numeric univariate data entities (or data elements) and are referred to 

here as the data sequence; this sequence belongs to the EP set. 

• In the context of continual data sequencing, a set of previous (past) data elements are called 

standards while the current data element is referred to as a deviant 

• All data elements are sequentially observed and analysed by a user hand-coded deviant 

mathematization program.  

• In the future, and at each time step of the observation, a deviant program operation gives a 

sequence of future (predicted) mismatch states; an EP counter is incremented at each stage (time 

step, t) of the prediction until the desired number of time-stepped iterations is met. 

 

Next, we describe the phases and operations in Phase-1 that can be performed by an AMI program. 

 

PhasePhasePhasePhase----1 or low level (pre1 or low level (pre1 or low level (pre1 or low level (pre----prediction) phase:prediction) phase:prediction) phase:prediction) phase:    

 

As before, let an EP be represented by the model expression:  

  

{ }





⊂
=

+1

21 ,,,,

epep

n

ep
SS

SSS
S

L

       (A.1) 

 

 

where, 

 

n = total number of sequences.  

 

The input standards are usually sparse but are not necessarily constrained to be so; the sparse operation 

follows the overlap technique earlier proposed in Ahmad & Hawkins (2015); however the standards 

obtained by overlap may be fine-tuned for amplification giving a sparse real number set instead of sparse 

binary set as follows: 
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Ν = uniform random number with values that fall between 0 and 1 

 fΑ  = the amplification factor 

c = number of cells (cell mini-columns) 

 

We then select the best input SDR for the DLA mathematization stage i.e. we obtain the pattern that 

maximizes the overlapping mini-columns using a roulette wheel operation as: 

 
∗∗

= )( bestcepn SS          (A.3) 

 

where,  

)(max:, cbest ooifcc ς===        (A.4) 

 ∑ ∗
= )()( cepc Soς         (A.5) 

 ( )
)(max max coo ς=         (A.6) 

 

The deviations of the standard from the deviant in the overlapping EP set (EP
*

) for each mini-column may 

be computed as: 

 

starsndev SSS −= ∗

−1
        (A.7) 

 

where the deviant is defined as: 

  
∗

−= 1ndeviant SS          (A.8) 

and the standards are expressed as: 

 
∗

−= 2nstars SS          (A.9) 

 

The mean deviation for the EP
*

 is computed from Eq.7 and Eq.8 as: 
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A Phase-1 deviant prediction is then given by: 

 

)(1 meandevnpred SSS +=
∗

−         (A.11) 

 

The expression given in Eq.A.11 shows that there will obviously be an expected change in sequence 

prediction length through time; this is validated by the Model Adjustment Theory (Lieder et al, 2013).  
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