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ABSTRACT 

 
The paper extends our previous work on SEIR and investigates further the effect of the disease transmission 
coefficient on our model. The paper also studies the local and global stabilities of the disease free equilibrium using 
matrix and Lyapunov function methods when the basic reproduction number,  . The results obtained are in good 
agreement with existing results in the literature. The proof of our theorem shows that when  the endemic state is 
locally asymptotically stable.  
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1. INTRODUCTION 

 
Mathematical modeling has remained an important and effective tool to represent and predict the spread of an 
epidemic disease in sample population. The technique has many significant advantages over the damages presented 
by infectious disease. It could be used as guide for making policy decision on how to act to limit the damage caused 
by an epidemic, or to prevent its future outbreak. More specifically, it could be used to answer question on health 
economic aspects of prevention, emergency planning and risk assessment and in evaluation of control programmers. 
More recently, mathematical modeling has been used to predict the spread of foot and mouth disease and to simulate 
the outbreak of severe acute respiratory ailment. These models can be separated into two distinct types; those that 
approximate the total population of the system as constraint, and those that allow a total population to vary, 
accounting for births and deaths due to natural causes. 
 
A model is only ever as good as the assumptions made to build it. The basic premise of a model is that a small group 
of infected individuals is introduced to a wholly susceptible population. The assumption made about the transmission 
of infectious are crucial. With all of these models we assume that the population is homogenously mixed, and that 
every pair of individuals has an equal probability of coming into constant with one another.  Previous contributions 
such as [1,2]  on mathematical modelling of biological problems have been found useful and resourceful. [3] 
investigated for the numerical solution effect of saturation term on the susceptible individual. [3, 4] discussed 
dynamical behavior of epidemiological models with nonlinear incidence rates. [6,7] studied the global dynamics of the 
SEIR models with a non-linear incidence rate and with a standard incidence, respectively. [8] considered SEIR 
models that incorporate density dependence in the death rate. [9] considered the global stability of the SEI and SEIR 
model with infectious force in latent and infected period with non permanent immunity. [10] studied the long time 
behavior of a non-autonomous SEIRS epidemic model. They obtained new sufficient conditions for the permanence 
(uniform persistence) and extinction of infectious population of the model. . In [11,12], recent works were also 
presented in the current trend of SEIRS epidemic model.  Recently [3] studied numerical simulation on the effect of 
saturation terms on the susceptible individual in SEIRS Epidemic Model using the variational iteration method.  
  
In this paper, we extend the work done by [3] to study the effect of disease transmission coefficient on the model. In 
addition to the above, theorems are formulated and proved in order to establish criteria for the local and global 
stabilities of the disease free equilibrium. Results are presented in the form of basic reproduction number.   
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2.  MATHEMATICAL EQUATIONS 
 

A population of size )(tN is partitioned into subclasses of individuals who are susceptible, exposed (infected but not 

yet infectious) infectious and recovered with sizes denoted by )(tS , )(tE , )(tI  and )(tR respectively. The sum 

)()( tItE + is the total infected population. If it is assumed that all immigrant individuals are susceptible and vertical 

transmission can be assumed to acquire temporary immunity in which recovered individual goes back to the 
susceptible class again then following [3] whose SEIRS epidemic model is presented below;  
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The parameter 0)( >Λ t  is the birth rate, 0)( >tβ  is the disease transmission coefficient, 0)( >tµ  is the 

mortality/death rate, 0)( >tε  is the rate of developing infectivity, 0)( >tγ  is the recovery rate, 0)( >tδ  is the 

rate of losing immunity, with initial value 
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From equation (3); we obtained the disease free equilibrium;  
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Therefore the endemic equilibrium points are (S,E,I,R)= ),,, ∗∗∗∗∗∗∗∗ RIES  

          
    

3.     NEXT GENERATION MATRIX 0R  

  

Let G be a next generation matrix. It comprises of two parts F and 
1−

V  where 
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 iF  is the new infections, while the iV  are transfers of infections from one compartment to another. 0X  is the 

disease free equilibrium state. 
 

0R  is the dominant Eigen value of the matrix. 
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Because we are interested in Eand I compartment. 

Suppose 
 

0=− IG λ                                                                                                            (10) 
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4.   LOCAL STABILITY OF DISEASE FREE EQUILIBRIUM  
 
The system of equation (1) was linearised by setting 
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Therefore the resulting linearized equations are: 
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Therefore the resulting characteristic equation is  i.e 
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Hence,    )(     , 21 δµλµλ +−=−=
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Solving equation (17) gives  
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5 .  GLOBAL STABILITY OF THE DISEASE FREE EQUILIBRIUM  
 
Consider the Lyapunov function defined thus 
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        Equation (22) simplified to; 
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     Hence the disease free equilibrium is globally asymptotically stable 
 
 
6.   LOCAL STABILITY OF THE ENDEMIC EQUILIBRIUM  
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  Equation (27) is equivalent to; 
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The Jacobian matrix of above equation is  
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Therefore the characteristics equation is  
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Also by Descartes rule of signs, Let, 
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Then equation (35) becomes   
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)()37(0,0,0,0 6543 λ−<<<< fEquationinAAAAifSo , have four sign changes which implies, that 

there are exactly four negative roots of )( λ−f . Since there is no positive roots for 0,0,0,0 6543 <<<< AAAA  

That is all eigenvalues are negatives, then the endemic or disease equilibrium is locally asymptotically stable 

if 0,0,0,0 6543 <<<< AAAA
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Fig. I: Graph of SEIRS against t when 1=β  

 

 
Fig. II: Graph of SEIRS against t when 75.0=β  
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Fig. III: Graph of SEIRS against t when 5.0=β  

 

 
Fig. IV: Graph of SEIRS against t when 25.0=β  
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Fig. V: Graph of SEIRS against t when 0005.0=β  

 
 
7.  Discussion of Results and Conclusion  
 

Fig I: shows the unstable nature of disease free equilibrium when 0.1=β . It is also observed      that susceptible 

class and other classes decrease drastically while exposed compartment increases to a reasonable end. This shows 

the effect of β  at 0.1=β . Fig II: shows the unstable nature of disease free equilibrium at 75.0=β . It is also 

observed that exposed compartment increases to a reasonable end while susceptible individuals begin to increase 

and little individual recovered. This also shows the effect of transmission coefficient β  at 75.0=β because 

susceptible class begins to increase but not as exposed individual. Fig III: shows the unstable nature of disease free 

equilibrium at 50.0=β  but susceptible individual increases more than when β  was 75.0 but more individuals are 

still in the exposed compartment. This also shows the effect of transmission coefficient β  at 50.0=β . Fig IV: 

shows a slight asymptotic stability nature of disease free equilibrium when 25.0=β  because susceptible individual 

increases to a reasonable end more than other compartment. This also show the effect of β  at 25.0=β . Fig V: 

shows the stable nature of disease free equilibrium at 0005.0=β . Susceptible individuals increase more than 

other individuals at 0005.0=β . This shows the effect of transmission coefficient in disease eradication. 

 

In conclusion, the simulation results show that disease transmission coefficient β  plays appreciable role in the 

disease eradication. The lower the disease transmission coefficient, the better stability of disease free equilibrium and 
hence, the disease will be eradicated from the population. Therefore for better disease eradication in a population, 

transmission coefficients β  should be so low and susceptible individuals should be given better orientations on how 

to reduce transmission coefficients for better eradication. 
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