

169

 Vol. 6. No. 1, March, 2018

Text Mining Identification and Detection Using the Exact String Matching Text Mining Identification and Detection Using the Exact String Matching Text Mining Identification and Detection Using the Exact String Matching Text Mining Identification and Detection Using the Exact String Matching
Algorithm: A Comparative AnalysisAlgorithm: A Comparative AnalysisAlgorithm: A Comparative AnalysisAlgorithm: A Comparative Analysis

1111A.A. A.A. A.A. A.A. OjugOjugOjugOjugoooo and 2222D. AllenotorD. AllenotorD. AllenotorD. Allenotor
1,2Department of Mathematics/Computer Science

Federal University of Petroleum Resources
Effurun, Delta State, Nigeria

ojugo.arnold@fupre.edu.ng, allenotor.david@fupre.edu.ng

ABSTRACT ABSTRACT ABSTRACT ABSTRACT

Text mining is a new burgeoning field in computer science research that tries to solve the crisis of
information overload by combining techniques from data mining, machine learning, natural language
processing, information retrieval, and knowledge management. Increase in document collection,
often litters the collection with high rate of change. These pose search, performance and
optimization challenges for various components of text-mining system. Users must better leverage
their burgeoning textual data resources via tools that rely on a building up networks of interconnected
objects via various relationships in order to discover patterns and trends. The study adopts a string-
based matching algorithm which aims to extract, discover, and link together sparse evidence from vast
amounts of data sources, to represent and evaluate the significance of the related evidence, and to
learn patterns to guide the extraction, discovery, and linkage of entities.

KeywordsKeywordsKeywordsKeywords———— Bag of words, string, pattern matching and text-mining,

1. INTRODUCTION1. INTRODUCTION1. INTRODUCTION1. INTRODUCTION

Scientific researchers often employ literatures in their quest for new knowledge frontiers, as a major
source of information during the course of their work. These, help to provide them with new ideas as
well as to supplement their empirical studies, field work and result finding. However, some feel that
this can be taken further: that new information, or at least new hypotheses, can be derived directly
from the literature by researchers who are expert in information-seeking but not necessarily in the
subject matter itself. Subject-matter experts can only read a small part of what is published in their
fields and are often unaware of developments in related fields. Information researchers, students and
other users do often seek useful linkages between related literatures, which is previously unknown –
especially, if there is little explicit cross-reference between literatures (Willet, 1988; Witten and
Frank, 2000). It should be noted that automatic text mining can aspire various studies via the
example below.

Article Progress TimArticle Progress TimArticle Progress TimArticle Progress Time Stampse Stampse Stampse Stamps

Article Type: Article Type: Article Type: Article Type: Research Article
Manuscript ReceivedManuscript ReceivedManuscript ReceivedManuscript Received: 12th Dec, 2017

Review Type: Review Type: Review Type: Review Type: Blind
Final AcceptanceFinal AcceptanceFinal AcceptanceFinal Acceptance:: 29th March, 2018

DOI PrefixDOI PrefixDOI PrefixDOI Prefix: 10.22624

Article Citation Format Article Citation Format Article Citation Format Article Citation Format
A.A. Ojugo & D. Allenotor (2018): Text Mining

Identification and Detection Using the Exact String Matching
Algorithm: A Comparative Analysis

Journal of Digital Innovations & Contemp Res. In Sc., Eng &
Tech. Vol. 6, No. 1. Pp 169-180

170

 Vol. 6. No. 1, March, 2018

We hear words like:
Birds of the same feather flock together
Birds fly towards the South in search of water
Birds choreograph in their motion etc

Reynolds (1987) extracted such information from titles in his quest for how agents react in response
to their environment. This led to his agent-based model for which we have flock of bird flying in tight
formation, which will collectively form an image with a goal movement as a single organism. Yet the
flock choreographing in such grace has no group-leader bird. Instead, each bird reacts to the
movement of its immediate neighbors, to result in hypnotic patterned rhythm and highly-nonlinear.
Modeling such elegance not governed by any system is tedious or difficult due to its dynamism,
complexity and nonlinear nature. But, it can be modeled as an aggregation of local feats interactions
via 3-simple rules: (a) separation – each bird does not get too close to another, (b) alignment – each
bird matches its direction and speed to nearest bird, and (c) cohesion – each bird stores in memory
the perceived center and its immediate neighbor (Reynolds, 1987). It models each bird as an agent
with local feats interaction to yield a highly realistic flight formation via simple rules – to result in
theory of Agent Based Modeling (Ojugo et al, 2014).

By analyzing chains of causal implication in literature related to agent, their social relations and agent
interactions, new hypotheses for causes of agent-models were discovered – some of which have
received supporting experimental and empirical evidence (Macy and Willer, 2002). Thus, a plausible
and new hypothesis emerged on social graphs that help predict tie strengths and other feats via
combination of text fragments and the information researcher’s background. However, these must be
investigated via non-textual means (Breslauer et al, 1992).

1.1 1.1 1.1 1.1 DefinitionDefinitionDefinitionDefinition
Text mining is a new, exciting area in computer science that tries to solve the crisis of information
overload by combining techniques from data mining, machine learning, knowledge management,
information retrieval and natural language processing. Similarly, link detection is a rapidly evolving
approach that involves analysis of text that shares and builds on many of the key elements of text
mining. These, provides new tools to users so that they can better leverage their quest and
burgeoning textual data resources. Link detection relies on a process of building up networks of
interconnected objects through various relationships in order to discover patterns and trends. Major
tasks of link detection are to extract, discover, and link together sparse evidence from vast amounts of
data sources, to represent and evaluate significance of the related evidence, and to learn patterns to
guide extraction, discovery, and linkage of entities (Feldman and Sanger, 2007).

Text mining is broadly defined as a knowledge-intensive process in which a user interacts with a
document collection over-time by using a suite of analysis tools. Analogous to data mining, text
mining seeks to extract useful data from sources via identification and exploration of interesting
patterns. Many of the source document collections show interesting patterns (not often found among
formalized database record); But; are in the unstructured textual data in these documents collection.
Thus, text mining derives much of its inspiration and direction from seminal research on data mining
– making data cum text mining systems evince in many architectural similarities. For instance, both
types of systems rely on preprocessing routines, pattern-discovery algorithms, and presentation-layer
elements such as visualization tools to enhance the browsing of answer sets.

171

 Vol. 6. No. 1, March, 2018

Further, text mining adopts many of the specific types of patterns in its core knowledge discovery
operations that were first introduced in data mining research (Porter, 2002).

1.2 1.2 1.2 1.2 String Matching String Matching String Matching String Matching
The exact string matching algorithm simply aims to match a pattern to the text. The problem
however, arises if the strings can be found repeatedly anywhere in the text (i.e. the number of strings
to find) is potentially large. Also, in some cases and applications, finding similar string instead of exact
strings, is be needed. This is equal to a string search using wildcards. For example, instead of
searching for the string perl.exe, one can search for p*rl.exe to get results pearl.exe, perl.exe, parl.exe
etc (Witten, Moffat and Bell, 1999). Basically, 2-mechanisms based on two different ideas on how to
handle character substitution or insertions (Witten and Bainbridge, 2003):
a. Substitution Error allows the replacement of one or more characters in a key search string. So,

instead of searching the whole key string, only some positions are considered. This method
cannot find character insertions or deletions.

b. Resemblance – here, the similarities of the two strings are measured by dividing the number of
characters they have in common by the length of the longer string. Formally, this equals the
division of the intersection by the union. Resemblance thus, can handle character insertion and
deletion (where it exists). It drawback is that the character positions are not taken into account.
So the two strings perl.exe and lexe.rpe have resemblance one. Clearly, this is not what we want.
To overcome this, the order or position numbers can be introduced.

2. 2. 2. 2. LEVERAGING ON FORMALIZED TEXTLEVERAGING ON FORMALIZED TEXTLEVERAGING ON FORMALIZED TEXTLEVERAGING ON FORMALIZED TEXT----MINING MINING MINING MINING OPERATIONSOPERATIONSOPERATIONSOPERATIONS

Data mining assumes data from various sources have been stored in a structured format, so that
much of its preprocessing focuses on two critical tasks: (a) data scrub and normalizing, and (b)
creating extensive numbers of table joins. As opposed to this in text mining, its preprocessing
operations center on the identification and extraction of representative feats for natural language
documents. It thus, transforms unstructured data stored in the document collections, into a more
explicitly structured intermediate format. Due to the centrality of natural language text to its goal(s),
text mining draws on the advances that explores and exploits techniques from the areas of
information retrieval, information extraction, and corpus-based computational linguistics (Feldman
and Dagan, 1995). It transforms different elements contained in a natural language document from
the usual irregular and implicitly unstructured representation – into an explicitly structured
representation.

However, given the potentially large database and collection of words, phrases, sentences,
typographical element errors, layout artifacts that even a short document may have – not to mention
the potentially vast number of different senses that each of these elements may have in various
contexts and combinations, an essential task of text-mining is its focus in the identification of a
simplified subset of the documents features that can be used to represent a particular document.
These have often been classified as the representational model and all efforts to develop an efficient
representational model is daunting as each document usually contains large number of features. And
the large number of features contained therein a document affects every aspect of the text mining
system’s approach, design, optimization and performance (Smith, 2002; Montes-y-Gomez et al,
2001b).

172

 Vol. 6. No. 1, March, 2018

2.1 2.1 2.1 2.1 Structural Design of the Documents FeatureStructural Design of the Documents FeatureStructural Design of the Documents FeatureStructural Design of the Documents Feature
Text mining algorithm and system operate on feature-based representations of documents with two
important goals. First, it seeks to achieve a correct calibration of the volume and the semantic level of
features to portray meaning of a document accurately, which tends to incline text mining
preprocessing operations toward selecting or extracting relatively more features to represent
documents.

The second goal is to identify features in a way that is most computationally efficient and practical for
pattern discovery that emphasizes streamlining of representative feature sets which is supported by
validation, normalization, or cross-referencing features against controlled vocabularies or external
knowledge sources like dictionaries, thesauri, ontologies or knowledge bases to assist in generating
smaller representative sets of more semantically rich features (Blake and Pratt, 2001).

To achieve these, it uses four (4) commonly used features (Feldman and Sanger, 2007):
a. Characters – these are individual component-level letters, numerals, special character and spaces,

contained therein to form the basic building block for higher semantics known as bag-of-
characters such as bigrambigrambigrambigram or trigramtrigramtrigramtrigram)

b. Words (are cluster of characters concatenated together to form words, selected from the native
document. It often consists of a subset of representative features filtered for items like
meaningless numeric, symbolic characters and stop words that forms bag-of-words etc.

c. Terms are words and multi-word phrases selected directly from the corpus of native document
via term extraction methodologies. Term level feats can only be made up of specific words and
expressions found within the native document for which they are generally representative of. E.g.
“Buhari is the President of Nigeria” contains words like “Buhari,”, “is”, “the”, “President”, and
“Nigeria” as well as multiword such as “President of Nigeria” etc.

d. Concepts are features generated for a document by means of manual, statistical, rule-based or
hybrid categorization methodologies – that often uses complex preprocessing routines that
identifies single words, multi-words, whole clauses, or even larger syntactical cum semantic units
that are related to the specific phrase or concept identifier. Many of these concept categorization
methodologies involves the use of cross-referencing against an external knowledge source (for
statistical methods – the source may be annotated collection of training documents). Thus,
concepts can include words and expressions not found in the native document.

2.2 2.2 2.2 2.2 Search for Patterns and TrendsSearch for Patterns and TrendsSearch for Patterns and TrendsSearch for Patterns and Trends
Though, text mining preprocessing operations plays critical role in transforming unstructured content
into a more tractable concept-level data representation, the core functionality of a text mining system
resides in the analysis of co-occurrence patterns across documents in a collection. Thus, it relies on
algorithmic and heuristic approaches to consider distributions, frequent sets, and various associations
of concepts at an inter-document level in an effort to enable a user to discover the nature and
relationships of concepts reflected in the collection as a whole.

Text mining methods are largely based on a large-scale brute-force search directed at large, high-
dimensionality feature sets that yields very large numbers of patterns. This, results in an
overabundance problem with respect to identified patterns that is usually more severe than that
encountered in data mining applications aimed at structured data sources.

173

 Vol. 6. No. 1, March, 2018

A main operational task for text mining systems is to enable a user to limit pattern overabundance by
providing refinement capabilities that key on various specifiable measure or degree of
“interestingness” for search results. This also prevents users from getting overwhelmed by too many
uninteresting results. The problem of pattern overabundance exists in all knowledge discovery
activities. It is simply heightened when interacting with large collections of text documents, and,
therefore, text mining operations must necessarily be conceived to provide not only relevant but also
manageable result sets to a user.

Text mining also builds on various data mining approaches first specified in Lent, Agrawal, and
Srikant (1997) to identify trends in data. In text mining, trend analysis relies on date-and-time
stamping of documents within a collection so that comparisons can be made between a subset of
documents relating to one period and a subset of documents relating to another. Trend analysis
across document subsets attempts to answer certain types of questions.

For instance, in relation to a collection of news stories (Montes-y-Gomez et al, 2001a) suggests that
trend analysis concerns itself with the following:
a. What is the general trend of the news topics between two periods (represented by two different

document subsets)?
b. Are the news topics nearly the same, or are they widely divergent across the two periods?
c. Can emerging and disappearing topics be identified?
d. Did any topics maintain the same level of occurrence during the two periods?

3. 3. 3. 3. MATERIALS AND METHODOLOGYMATERIALS AND METHODOLOGYMATERIALS AND METHODOLOGYMATERIALS AND METHODOLOGY

Given a problem for which there exists the alphabet(s) ∑, a string of text T (search space – from
where we search for the possible solution) and its length |T| = n, and the string that is searched
known as the pattern P and its length | P | = m. The problem is to search for the given pattern P
amongst the search space string text T – so that a solution can be found using shift methods. It is
clear that the text T must have at least the same length as the pattern P as n ≥ m; otherwise, the
problem is intractable. Thus, the exact string matching problem consists of finding all valid shifts with
which a given pattern P occurs in a given text T. A position ssss {0,…,n – m} in T is a valid shift if P

occurs with shift ssss in T – expressed mathematically as (Guo, 2014, Klaib et al, 2007):

pattern[iiii] = text[ssss+iiii], i {0,…, m – 1} (1)

In all other cases, ssss is an invalid shift. If ssss is a valid shift, then we have that P{0…m – 1} = T{ssss…ssss + m –
1} (2).

3.1 3.1 3.1 3.1 Naïve AlgorithmNaïve AlgorithmNaïve AlgorithmNaïve Algorithm
The naïve algorithm yields a solution that makes comparison character by character of the text T
[s...s + m – 1] for all s {0,…, n – m +1} and the pattern P{0…m – 1} such that it returns all the valid

shifts found. The solution is quite effective in that given the pattern to be search for P from the text
T, we need mmmm-operations of comparison by shift. Thus, for all text – we need (nnnn – mmmm + 1) * m
operation(s). Generally, because mmmm is very small compared to nnnn – it yields a time complexity O(nmnmnmnm).
Its pseudocode is given on the next page

174

 Vol. 6. No. 1, March, 2018

PseudocodePseudocodePseudocodePseudocode

// Return an array which contains all valid shifts in text (str)
NaiveMethod(text, pattern)
{

n = length(text);
m = length(patter,);
limit = n – m;
j = 0, k = 0;
arrayOfValidShift[];

for(i = 0; i <= limit; i++)
{

j = 0;
k = i;
for (j = 0; j <= m AND str[k] == pat[j]; j++)

k++;
if (j >= m)

Add i to arrayOfValidShift;
}
return arrayOfValidShift;

}

3.2 3.2 3.2 3.2 KnuthKnuthKnuthKnuth----MorrisMorrisMorrisMorris----Pratt (KMP) AlgorithmPratt (KMP) AlgorithmPratt (KMP) AlgorithmPratt (KMP) Algorithm
As in fig 1 below

KMP is a linear time algorithm, more accurately O(nnnn+mmmm). Its main characteristic is that each time a
match between pattern and a shift in text fails, the algorithm will use the data given by a specific table,
obtained by a preprocessing of the pattern, to avoid re-examine the characters that have been
previously checked, thus limiting the number of comparison required. So KMP consists of two parts,
a searchingsearchingsearchingsearching part which consists to find the valid shifts in the text, where the time complexity is O(N),
obtained by comparison of the pattern and the shifts of the text, and prepreprepreprocessingprocessingprocessingprocessing part which
consists to preprocesses the pattern.

Match success

No match, shift

Text T:

Pattern P:

g c a t c a c a g a g a t t a c a c a g

No match, shift 8

g a t

Fig. 1: KnuthFig. 1: KnuthFig. 1: KnuthFig. 1: Knuth----MorrisMorrisMorrisMorris----Pratt StringPratt StringPratt StringPratt String

g a t

g a t

175

 Vol. 6. No. 1, March, 2018

The goal of the preprocessing of pattern consists to obtain a table that gives the next position in the
pattern to be processed after a mismatch. For a pattern P[0…mmmm – 1], the table of result of the
preprocessing will give for each character j contained in the pattern a value which is defined as the
substring that is in the same time the longest prefix of the pattern and the suffix of the substring of
pattern p’[0…j]. The complexity of the preprocessing part is O(mmmm), applying the same searching
algorithm to the pattern itself.

3.3 3.3 3.3 3.3 AhoAhoAhoAho----CorasickCorasickCorasickCorasick
Zink (2014) A trie is a digital tree (also called a radix or prefix tree) with a graph-like structure such
that in searching for a string, the structure can be searched by prefixes. Thus, it is an ordered tree
data structure that is used to store a dynamic set or associative array where the keys are usually
strings. However, the Aho-Corasick algorithm builds a trie of all the characters in the key strings that
should be found – such that to find all key strings in one pass over the payload, it pre-computes
failure pointers that points from already recognized characters to all possible suffixes. So if a failure
occurs – the trie follows the failure pointers to the next character, if it is recognized. Fig 2 shows a 2-
phase building of Aho-Corasick algorithm trie using the key strings {track, crack, race, trace}. As is
seen, all key strings can be found with one-pass over the search string (the packet payload). On a hit,
read string is recognized.

However, on a miss or failure (where the read string is not recognized) – traversing the trie starts
anew so that the next character is not part of a key string already read and the trie follows the failure
pointer to identify the new string. In the case where such occurs, with the key string not recognized, it
implies that it is a genuine connection (Zink, 2009). Basically, the algorithm trie forms a state
transition machine resembling the characters read. Thus, it is called Aho-Corasick automaton. It is
efficient in space consumption – since the trie is already compressed and in complexity. It provides a
linear search time. Its only drawback is the large number of failure pointers that can arise.

Fig. 2: Building an AhoFig. 2: Building an AhoFig. 2: Building an AhoFig. 2: Building an Aho----Corasick TrieCorasick TrieCorasick TrieCorasick Trie

c a r t k 1

c

c a r k

2

4

e

c
i

r

3

e

176

 Vol. 6. No. 1, March, 2018

3333.4 .4 .4 .4 Boyer Moore Algorithm (BMA)Boyer Moore Algorithm (BMA)Boyer Moore Algorithm (BMA)Boyer Moore Algorithm (BMA)

Ojugo (2017) BMA is one of the most efficient exact string matching algorithms available as it
actually does find matches in a sub-linear search time. It achieves this by simply scanning through the
key string from left to right. On a miss, the key string is shifted a pre-computed number of characters
to the right until a match of the current character occurs. Then, the next character not yet matched is
considered. Since the length of the key string and the position of the current character is known, the
number of characters on which the match of the key string can occur can be computed. Fig. 3 shows
example with characters matched depicted using upper-cases. What is clear on inspecting the sample
is that the algorithm can find exact string matches in sub-linear search time. Its demerit(s) includes
that: (a) in the search for multiple key strings in a payload – the algorithm is quite inefficient, and (b)
each key string has to be stored in its entirety.

3.5 3.5 3.5 3.5 PPPProblem Statementroblem Statementroblem Statementroblem Statement
A major/key element in text mining is its focus on document collection (grouping of text-based
documents) as either static (in which the documents remains unchanged) or dynamic (in which the
document collection is characterized by its inclusion of new or updated documents over-time). But,
challenges arise in malware detection (where codes to be detected are dynamic and always changing
with insertion of whitespaces etc) as well as in the scenario below, we note that:
1. Large document collections and those with very high rate of document change often pose

performance search and optimization challenges for the various components of a text-mining
system. How do we best resolve such issues?

2. How can we best transform an irregular and implicitly unstructured representation into an
explicitly structured representation?

3. Given a potentially massive collection of words, phrases, sentences, typographical errors, layout
artifacts that any given document can feature as well as the potentially vast number of different
senses that each of these may have in various contexts and combinations, how can we easily
present it to users such that they can make meaning more easily from the document?

Text T:

Pattern

g c a t c a c a g a g a t t a c a c

No match, shift 1

g a t t a c

Text T:

Pattern

g c a t c a c a g a g a t t a c a c

No match, shift 9

g a t t A

Text T:

Pattern

g c a t c a c a g a g a t t a c a c

Match found, continue…

G A T TA C

FiFiFiFig. 3: Boyer Moore algorithmg. 3: Boyer Moore algorithmg. 3: Boyer Moore algorithmg. 3: Boyer Moore algorithm

177

 Vol. 6. No. 1, March, 2018

3.5 3.5 3.5 3.5 Study SampleStudy SampleStudy SampleStudy Sample
The goal here, is to use string matching algorithm to find a pattern P from text T using various
algorithms as we measure various properties for the different string matching algorithm. For the
study, we use the textbook “Introductory University Computer Science, edited by Allenotor, Ojugo
and Oyemade”, with text T = 7,320,103 and the pattern P = “program”.

4. 4. 4. 4. FINDINGS AND DISCUSSIONFINDINGS AND DISCUSSIONFINDINGS AND DISCUSSIONFINDINGS AND DISCUSSION

4.1 4.1 4.1 4.1 FindingsFindingsFindingsFindings
Using a simple Python implementation of various matching algorithms, we compared algorithms
based these feats:

Classification AccuracyClassification AccuracyClassification AccuracyClassification Accuracy

Fig. 4: PredictionFig. 4: PredictionFig. 4: PredictionFig. 4: Prediction Accuracy of Algorithms in percentageAccuracy of Algorithms in percentageAccuracy of Algorithms in percentageAccuracy of Algorithms in percentage

Fig 4 shows prediction accuracy for algorithms explained with graph representation.

Processing SpeedProcessing SpeedProcessing SpeedProcessing Speed

Fig. 5: Processing time in SecondsFig. 5: Processing time in SecondsFig. 5: Processing time in SecondsFig. 5: Processing time in Seconds

Fig 5 shows processing time for the various string matching algorithms.

178

 Vol. 6. No. 1, March, 2018

CoCoCoConvergence Timenvergence Timenvergence Timenvergence Time

Fig. 6: Convergence time of matchesFig. 6: Convergence time of matchesFig. 6: Convergence time of matchesFig. 6: Convergence time of matches

Fig 6 shows the convergence time of matches in which the various algorithms took in finding the
patterns within the text.

4.2 4.2 4.2 4.2 DiscussionDiscussionDiscussionDiscussion
We provide a summary table 1 for tabular comparison:

Table 3: Comparative Result
Items Naïve Aho-Corasick BMA KMP
Text 7,320,103 7,320,103 7,320,103 7,320,103
Pattern program program program program
Convergence 3.11secs 2.96secs 1.39secs 1.19secs
Matches |T| 1902 1829 2003 1967

Looking at the results, we conclude that BMA yields the best algorithm result in majority of cases –
because, the more long its pattern is, the more its advantage becomes significant. In tandem with Guo
(2014), the reason being that it skips more characters during a shift so that its complexity is sub-linear
yielding O(N=M). But, this advantage disappears if pattern is very small. KMP and Naïve algorithm
obtain similar results (though, KMP is always a bit better). KMP is also a very good choice if the
length of pattern is very short. We also notice that the results for shorter patterns show more
similarities between the pattern and substrings for the given text even when there are no matches.
These similarities require more comparisons and must be further processed to ascertain a true result.

5. 5. 5. 5. RECOMMENDATIONS / CONCLUSIONRECOMMENDATIONS / CONCLUSIONRECOMMENDATIONS / CONCLUSIONRECOMMENDATIONS / CONCLUSION

In many applications today, finding the appropriate content in minimal time is critical and quite
important. Thus, string algorithms play a vital role in this. Data mining and text mining techniques
are today employed by different groups that are working both on software and hardware levels to
make pattern searching faster. Researchers must continue in their implementation and quest to
improve string algorithm usage in different applications. BMA and KMP are recommended in many
cases with their reduced complexity and computation time.

179

 Vol. 6. No. 1, March, 2018

They have been successfully used in many applications. They may not be the best optimal algorithm
for a case; But, they have proven to be better than most algorithms. Most text and data mining
applications today use BMA and/or KMP for their effective and efficient functionality – due to their
lesser search and processing time complexity. Other algorithms depends upon the type of input and
is efficient for certain or particular application.

RRRREFERENCESEFERENCESEFERENCESEFERENCES

[1] Allenotor, D., Ojugo, A.A and Oyemade, D.A., (2016). Introductory University Computer

Science, Published Lecture notes in Computer Science for University Students, ISBN: 978-978-
41320-1-X, His Bride Publishers: Asaba.

[2] Blake, C., and Pratt,W. (2001). Better Rules, Fewer Features: A Semantic Approach to
Selecting Features from Text. In Proceedings of the 2001 IEEE International Conference on
Data Mining. San Jose, CA, IEEE Computer Society Press, New York: 59–66.

[3] Breslauer, D., Colussi, D and Toniolo, L., (1992). Tight Comparison Bounds for the String
Prefix Matching Problem, Stiching Mathematisch Centrum, Amsterdam, 1-9, 1992.

[4] Chaudhary, R., Rasool, A and Khare, N., (2012). Variations of Boyer-Moore string matching
algorithm: a comparative analysis, International Journal of Computer Science and Information
Security, Vol. 10, No. 2, pp 95 – 101.

[5] Feldman, R., and Dagan, I. (1995). Knowledge Discovery in Textual Databases (KDT). In
Proceedings of 1st International Conference on Knowledge Discovery and Data Mining.
Montreal, Canada, AAAI Press, Menlo Park, CA: 112–117.

[6] Feldman, R and Sanger, J., (2007). The text mining handbook: advanced approaches in
analyzing unstructured data, Cambridge University Press, ISBN-13: 978-0-521-83657-9

[7] Guo, M., (2014). Algorithms for string matching, [online]: www.google.com/ retrieved on
December 21 2016.

[8] Klaib, A.F., Zainol, Z., Ahamed, N.H., Ahmad, R and Hussin, W., (2007). Application of
Exact String Matching Algorithms towards SMILES Representation of Chemical Structure,
World Academy of Science, Engineering and Technology, Vol. 34, pp 36 – 40.

[9] Lent, B., Agrawal, R and Srikant, R., (1997). Discovering trends in text databases. In
Proceedings of the 3rd Annual Conference on Knowledge Discovery and Data Mining (KDD-
97) D. Heckerman, H. Mannila, D. Pregibon, and R. Uthrysamy, eds. Newport Beach, CA,
AAAI Press, Menlo Park, CA: 227–230.

[10] Macy M and Willer, J., (2002). From factor to actors: computational sociology and agent based
model, Annual Review Sociology, Vol. 28, pp 143–166

[11] Montes-y-Gomez, M., Gelbukh, A., and Lopez-Lopez, A. (2001a). Discovering Association
Rules in Semi-Structured Data Sets. In Proceedings of the Workshop on Knowledge Discovery
from Distributed, Dynamic, Heterogeneous, Autonomous Data and Knowledge Source at 17th
International Joint Conference on Artificial Intelligence (IJCAI’2001). Seattle, AAAI Press,
Menlo Park, CA: 26–31.

[12] Montes-y-Gomez, M., Gelbukh, A., and Lopez-Lopez, A. (2001b). Mining the News: Trends,
Associations and Deviations.” Computacion y Sistemas, , , , Vol. 5, No. 1, pp 14–25.

[13] Ojugo, A.A., (2017). Introductory text mining for graduate studies, Lecture notes in Computer
Science for PG Students, www.fupre.edu.ng/mcs/cs-notes/data_text_mining/notes.html

[14] Ojugo, A.A., Yoro, R.E., Eboka, A., Yerokun, M., Anujeonye, C.N and Efozia, F.N., (2015).
Predicting Behavioural Evolution on a Graph-Based Model, Advances in Networks, Vol. 3, No.
2, 2015, pp. 8-21, doi: 10.11648/j.net.20150302.11

180

 Vol. 6. No. 1, March, 2018

[15] Porter, A. (2002). Text Mining. Technology Policy and Assessment Center, Georgia Institute of
Technology.

[16] Reynolds C.W., (1987). Flocks, herds and schools: distributed behavioral model, Computer
Graphics, 21, p25–34

[17] Sedgewick, R and Wayne, K., (2014). Algorithms – 4th Edition,
[18] Singla, N and Garg, D., (2012). String matching algorithm and their applicability in various

applications, International Journal of Soft Computing and Engineering, Vol. 1, Issue 6, pp 218 –
222.

[19] Smith, D., (2002). Detecting and browsing events in unstructured Text, In Proceedings of the
25th Annual ACM SIGIR Conference. Tampere, Finland, ACM Press, New York: 73–80.

[20] Willett, P. (1988) “Recent trends in hierarchical document clustering: A critical review.”
Information Processing and Management, Vol. 24, No. 5, pp. 577–597.

[21] Witten, I.H., Moffat, A. and Bell, T.C. (1999) Managing gigabytes: compressing and indexing
documents and images. Morgan Kaufmann, San Francisco, CA.

[22] Witten, I.H. and Frank, E. (2000) Data mining: Practical machine learning tools and techniques
with Java implementations. Morgan Kaufmann, San Francisco, CA.

[23] Witten, I.H. and Bainbridge, D. (2003) How to build a digital library. Morgan Kaufmann, San
Francisco, CA.

[24] Zink, T., (2009). Network security algorithms, Konstanzer Online Publikations-System,
www.nbn-resolving.de/urn:nbn:de:bsz:352-175988, last retrieve December 10, 2016.

