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ABSTRACT ABSTRACT ABSTRACT ABSTRACT     
 
Text mining is a new burgeoning field in computer science research that tries to solve the crisis of 
information overload by combining techniques from data mining, machine learning, natural language 
processing, information retrieval, and knowledge management. Increase in document collection, 
often litters the collection with high rate of change. These pose search, performance and 
optimization challenges for various components of text-mining system. Users must better leverage 
their burgeoning textual data resources via tools that rely on a building up networks of interconnected 
objects via various relationships in order to discover patterns and trends. The study adopts a string-
based matching algorithm which aims to extract, discover, and link together sparse evidence from vast 
amounts of data sources, to represent and evaluate the significance of the related evidence, and to 
learn patterns to guide the extraction, discovery, and linkage of entities. 
 
KeywordsKeywordsKeywordsKeywords————    Bag of words, string, pattern matching and  text-mining,        
    
    
1. INTRODUCTION1. INTRODUCTION1. INTRODUCTION1. INTRODUCTION    
 
Scientific researchers often employ literatures in their quest for new knowledge frontiers, as a major 
source of information during the course of their work. These, help to provide them with new ideas as 
well as to supplement their empirical studies, field work and result finding. However, some feel that 
this can be taken further: that new information, or at least new hypotheses, can be derived directly 
from the literature by researchers who are expert in information-seeking but not necessarily in the 
subject matter itself. Subject-matter experts can only read a small part of what is published in their 
fields and are often unaware of developments in related fields. Information researchers, students and 
other users do often seek useful linkages between related literatures, which is previously unknown – 
especially, if there is little explicit cross-reference between literatures (Willet, 1988; Witten and 
Frank, 2000). It should be noted that automatic text mining can aspire various studies via the 
example below.  
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We hear words like: 
Birds of the same feather flock together 
Birds fly towards the South in search of water 
Birds choreograph in their motion etc 

 
Reynolds (1987) extracted such information from titles in his quest for how agents react in response 
to their environment. This led to his agent-based model for which we have flock of bird flying in tight 
formation, which will collectively form an image with a goal movement as a single organism. Yet the 
flock choreographing in such grace has no group-leader bird. Instead, each bird reacts to the 
movement of its immediate neighbors, to result in hypnotic patterned rhythm and highly-nonlinear. 
Modeling such elegance not governed by any system is tedious or difficult due to its dynamism, 
complexity and nonlinear nature. But, it can be modeled as an aggregation of local feats interactions 
via 3-simple rules: (a) separation – each bird does not get too close to another, (b) alignment – each 
bird matches its direction and speed to nearest bird, and (c) cohesion – each bird stores in memory 
the perceived center and its immediate neighbor (Reynolds, 1987). It models each bird as an agent 
with local feats interaction to yield a highly realistic flight formation via simple rules – to result in 
theory of Agent Based Modeling (Ojugo et al, 2014). 
 
By analyzing chains of causal implication in literature related to agent, their social relations and agent 
interactions, new hypotheses for causes of agent-models were discovered – some of which have 
received supporting experimental and empirical evidence (Macy and Willer, 2002). Thus, a plausible 
and new hypothesis emerged on social graphs that help predict tie strengths and other feats via 
combination of text fragments and the information researcher’s background. However, these must be 
investigated via non-textual means (Breslauer et al, 1992). 
    
1.1 1.1 1.1 1.1 DefinitionDefinitionDefinitionDefinition    
Text mining is a new, exciting area in computer science that tries to solve the crisis of information 
overload by combining techniques from data mining, machine learning, knowledge management, 
information retrieval and natural language processing. Similarly, link detection is a rapidly evolving 
approach that involves analysis of text that shares and builds on many of the key elements of text 
mining. These, provides new tools to users so that they can better leverage their quest and 
burgeoning textual data resources. Link detection relies on a process of building up networks of 
interconnected objects through various relationships in order to discover patterns and trends. Major 
tasks of link detection are to extract, discover, and link together sparse evidence from vast amounts of 
data sources, to represent and evaluate significance of the related evidence, and to learn patterns to 
guide extraction, discovery, and linkage of entities (Feldman and Sanger, 2007). 
 
Text mining is broadly defined as a knowledge-intensive process in which a user interacts with a 
document collection over-time by using a suite of analysis tools. Analogous to data mining, text 
mining seeks to extract useful data from sources via identification and exploration of interesting 
patterns. Many of the source document collections show interesting patterns (not often found among 
formalized database record); But; are in the unstructured textual data in these documents collection. 
Thus, text mining derives much of its inspiration and direction from seminal research on data mining 
– making data cum text mining systems evince in many architectural similarities. For instance, both 
types of systems rely on preprocessing routines, pattern-discovery algorithms, and presentation-layer 
elements such as visualization tools to enhance the browsing of answer sets.  
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Further, text mining adopts many of the specific types of patterns in its core knowledge discovery 
operations that were first introduced in data mining research (Porter, 2002). 
    
1.2 1.2 1.2 1.2 String Matching String Matching String Matching String Matching     
The exact string matching algorithm simply aims to match a pattern to the text. The problem 
however, arises if the strings can be found repeatedly anywhere in the text (i.e. the number of strings 
to find) is potentially large. Also, in some cases and applications, finding similar string instead of exact 
strings, is be needed. This is equal to a string search using wildcards. For example, instead of 
searching for the string perl.exe, one can search for p*rl.exe to get results pearl.exe, perl.exe, parl.exe 
etc (Witten, Moffat and Bell, 1999). Basically, 2-mechanisms based on two different ideas on how to 
handle character substitution or insertions (Witten and Bainbridge, 2003): 
a. Substitution Error allows the replacement of one or more characters in a key search string. So, 

instead of searching the whole key string, only some positions are considered. This method 
cannot find character insertions or deletions. 

b. Resemblance – here, the similarities of the two strings are measured by dividing the number of 
characters they have in common by the length of the longer string. Formally, this equals the 
division of the intersection by the union. Resemblance thus, can handle character insertion and 
deletion (where it exists). It drawback is that the character positions are not taken into account. 
So the two strings perl.exe and lexe.rpe have resemblance one. Clearly, this is not what we want. 
To overcome this, the order or position numbers can be introduced. 

    
2. 2. 2. 2. LEVERAGING ON FORMALIZED TEXTLEVERAGING ON FORMALIZED TEXTLEVERAGING ON FORMALIZED TEXTLEVERAGING ON FORMALIZED TEXT----MINING MINING MINING MINING OPERATIONSOPERATIONSOPERATIONSOPERATIONS    
 
Data mining assumes data from various sources have been stored in a structured format, so that 
much of its preprocessing focuses on two critical tasks: (a) data scrub and normalizing, and (b) 
creating extensive numbers of table joins. As opposed to this in text mining, its preprocessing 
operations center on the identification and extraction of representative feats for natural language 
documents. It thus, transforms unstructured data stored in the document collections, into a more 
explicitly structured intermediate format. Due to the centrality of natural language text to its goal(s), 
text mining draws on the advances that explores and exploits techniques from the areas of 
information retrieval, information extraction, and corpus-based computational linguistics (Feldman 
and Dagan, 1995). It transforms different elements contained in a natural language document from 
the usual irregular and implicitly unstructured representation – into an explicitly structured 
representation.  
 
However, given the potentially large database and collection of words, phrases, sentences, 
typographical element errors, layout artifacts that even a short document may have – not to mention 
the potentially vast number of different senses that each of these elements may have in various 
contexts and combinations, an essential task of text-mining is its focus in the identification of a 
simplified subset of the documents features that can be used to represent a particular document. 
These have often been classified as the representational model and all efforts to develop an efficient 
representational model is daunting as each document usually contains large number of features. And 
the large number of features contained therein a document affects every aspect of the text mining 
system’s approach, design, optimization and performance (Smith, 2002; Montes-y-Gomez et al, 
2001b). 
    

 



                                                                                                                                                                  

 

172 

 

 
                                Vol. 6. No. 1, March, 2018 
      

2.1 2.1 2.1 2.1 Structural Design of the Documents FeatureStructural Design of the Documents FeatureStructural Design of the Documents FeatureStructural Design of the Documents Feature    
Text mining algorithm and system operate on feature-based representations of documents with two 
important goals. First, it seeks to achieve a correct calibration of the volume and the semantic level of 
features to portray meaning of a document accurately, which tends to incline text mining 
preprocessing operations toward selecting or extracting relatively more features to represent 
documents.  
 
The second goal is to identify features in a way that is most computationally efficient and practical for 
pattern discovery that emphasizes streamlining of representative feature sets which is supported by 
validation, normalization, or cross-referencing features against controlled vocabularies or external 
knowledge sources like dictionaries, thesauri, ontologies or knowledge bases to assist in generating 
smaller representative sets of more semantically rich features (Blake and Pratt, 2001).  
 
To achieve these, it uses four (4) commonly used features (Feldman and Sanger, 2007): 
a. Characters – these are individual component-level letters, numerals, special character and spaces, 

contained therein to form the basic building block for higher semantics known as bag-of-
characters such as bigrambigrambigrambigram or trigramtrigramtrigramtrigram) 

b. Words (are cluster of characters concatenated together to form words, selected from the native 
document. It often consists of a subset of representative features filtered for items like 
meaningless numeric, symbolic characters and stop words that forms bag-of-words etc.  

c. Terms are words and multi-word phrases selected directly from the corpus of native document 
via term extraction methodologies. Term level feats can only be made up of specific words and 
expressions found within the native document for which they are generally representative of. E.g. 
“Buhari is the President of Nigeria” contains words like “Buhari,”, “is”, “the”, “President”, and 
“Nigeria” as well as multiword such as “President of Nigeria” etc. 

d. Concepts are features generated for a document by means of manual, statistical, rule-based or 
hybrid categorization methodologies – that often uses complex preprocessing routines that 
identifies single words, multi-words,  whole clauses, or even larger syntactical cum semantic units 
that are related to the specific phrase or concept identifier. Many of these concept categorization 
methodologies involves the use of cross-referencing against an external knowledge source (for 
statistical methods – the source may be annotated collection of training documents). Thus, 
concepts can include words and expressions not found in the native document. 

    
2.2 2.2 2.2 2.2 Search for Patterns and TrendsSearch for Patterns and TrendsSearch for Patterns and TrendsSearch for Patterns and Trends    
Though, text mining preprocessing operations plays critical role in transforming unstructured content 
into a more tractable concept-level data representation, the core functionality of a text mining system 
resides in the analysis of co-occurrence patterns across documents in a collection. Thus, it relies on 
algorithmic and heuristic approaches to consider distributions, frequent sets, and various associations 
of concepts at an inter-document level in an effort to enable a user to discover the nature and 
relationships of concepts reflected in the collection as a whole.  
 
Text mining methods are largely based on a large-scale brute-force search directed at large, high-
dimensionality feature sets that yields very large numbers of patterns. This, results in an 
overabundance problem with respect to identified patterns that is usually more severe than that 
encountered in data mining applications aimed at structured data sources.  
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A main operational task for text mining systems is to enable a user to limit pattern overabundance by 
providing refinement capabilities that key on various specifiable measure or degree of 
“interestingness” for search results. This also prevents users from getting overwhelmed by too many 
uninteresting results. The problem of pattern overabundance exists in all knowledge discovery 
activities. It is simply heightened when interacting with large collections of text documents, and, 
therefore, text mining operations must necessarily be conceived to provide not only relevant but also 
manageable result sets to a user.  
 
Text mining also builds on various data mining approaches first specified in Lent, Agrawal, and 
Srikant (1997) to identify trends in data. In text mining, trend analysis relies on date-and-time 
stamping of documents within a collection so that comparisons can be made between a subset of 
documents relating to one period and a subset of documents relating to another. Trend analysis 
across document subsets attempts to answer certain types of questions.  
 
For instance, in relation to a collection of news stories (Montes-y-Gomez et al, 2001a) suggests that 
trend analysis concerns itself with the following: 
a. What is the general trend of the news topics between two periods (represented by two different 

document subsets)?  
b. Are the news topics nearly the same, or are they widely divergent across the two periods? 
c. Can emerging and disappearing topics be identified? 
d. Did any topics maintain the same level of occurrence during the two periods? 
    
3. 3. 3. 3. MATERIALS AND METHODOLOGYMATERIALS AND METHODOLOGYMATERIALS AND METHODOLOGYMATERIALS AND METHODOLOGY    
 
Given a problem for which there exists the alphabet(s) ∑, a string of text T (search space – from 
where we search for the possible solution) and its length |T| = n, and the string that is searched 
known as the pattern P and its length | P | = m. The problem is to search for the given pattern P 
amongst the search space string text T – so that a solution can be found using shift methods. It is 
clear that the text T must have at least the same length as the pattern P as n ≥ m; otherwise, the 
problem is intractable. Thus, the exact string matching problem consists of finding all valid shifts with 
which a given pattern P occurs in a given text T. A position ssss  {0,…,n – m} in T is a valid shift if P 

occurs with shift ssss in T – expressed mathematically as (Guo, 2014, Klaib et al, 2007): 
 
pattern[iiii] = text[ssss+iiii], i  {0,…, m – 1}   (1) 

 
In all other cases, ssss is an invalid shift. If ssss is a valid shift, then we have that P{0…m – 1} = T{ssss…ssss + m – 
1}     (2). 
    
3.1 3.1 3.1 3.1 Naïve AlgorithmNaïve AlgorithmNaïve AlgorithmNaïve Algorithm    
The naïve algorithm yields a solution that makes comparison character by character of the text T 
[s...s + m – 1] for all s  {0,…, n – m +1} and the pattern P{0…m – 1} such that it returns all the valid 

shifts found. The solution is quite effective in that given the pattern to be search for P from the text 
T, we need mmmm-operations of comparison by shift. Thus, for all text – we need (nnnn – mmmm + 1) * m 
operation(s). Generally, because mmmm is very small compared to nnnn – it yields a time complexity O(nmnmnmnm). 
Its pseudocode is given on the next page 
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PseudocodePseudocodePseudocodePseudocode    
    
// Return an array which contains all valid shifts in text (str) 
NaiveMethod(text, pattern) 
{ 

n = length(text); 
m = length(patter,); 
limit = n – m; 
j = 0, k = 0; 
arrayOfValidShift[]; 
 
for(i = 0; i <= limit; i++) 
{ 

j = 0; 
k = i; 
for (j = 0; j <= m AND str[k] == pat[j]; j++) 

k++; 
if (j >= m) 

Add i to arrayOfValidShift; 
} 
return arrayOfValidShift; 

} 
    
3.2 3.2 3.2 3.2 KnuthKnuthKnuthKnuth----MorrisMorrisMorrisMorris----Pratt (KMP) AlgorithmPratt (KMP) AlgorithmPratt (KMP) AlgorithmPratt (KMP) Algorithm    
As in fig 1 below 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
KMP is a linear time algorithm, more accurately O(nnnn+mmmm). Its main characteristic is that each time a 
match between pattern and a shift in text fails, the algorithm will use the data given by a specific table, 
obtained by a preprocessing of the pattern, to avoid re-examine the characters that have been 
previously checked, thus limiting the number of comparison required. So KMP consists of two parts, 
a searchingsearchingsearchingsearching part which consists to find the valid shifts in the text, where the time complexity is O(N), 
obtained by comparison of the pattern and the shifts of the text, and prepreprepreprocessingprocessingprocessingprocessing part which 
consists to preprocesses the pattern.  

Match success 

No match, shift 

Text T: 

Pattern P: 

g c a t c a c a g a g a t t a c a c a g 

No match, shift 8 

g a t 

Fig. 1: KnuthFig. 1: KnuthFig. 1: KnuthFig. 1: Knuth----MorrisMorrisMorrisMorris----Pratt StringPratt StringPratt StringPratt String    

g a t 

g a t 



                                                                                                                                                                  

 

175 

 

 
                                Vol. 6. No. 1, March, 2018 
      

The goal of the preprocessing of pattern consists to obtain a table that gives the next position in the 
pattern to be processed after a mismatch. For a pattern P[0…mmmm – 1], the table of result of the 
preprocessing will give for each character j contained in the pattern a value which is defined as the 
substring that is in the same time the longest prefix of the pattern and the suffix of the substring of 
pattern p’[0…j]. The complexity of the preprocessing part is O(mmmm), applying the same searching 
algorithm to the pattern itself. 
    
3.3 3.3 3.3 3.3 AhoAhoAhoAho----CorasickCorasickCorasickCorasick    
Zink (2014) A trie is a digital tree (also called a radix or prefix tree) with a graph-like structure such 
that in searching for a string, the structure can be searched by prefixes. Thus, it is an ordered tree 
data structure that is used to store a dynamic set or associative array where the keys are usually 
strings. However, the Aho-Corasick algorithm builds a trie of all the characters in the key strings that 
should be found – such that to find all key strings in one pass over the payload, it pre-computes 
failure pointers that points from already recognized characters to all possible suffixes. So if a failure 
occurs – the trie follows the failure pointers to the next character, if it is recognized. Fig 2 shows a 2-
phase building of Aho-Corasick algorithm trie using the key strings {track, crack, race, trace}. As is 
seen, all key strings can be found with one-pass over the search string (the packet payload). On a hit, 
read string is recognized.  
 
However, on a miss or failure (where the read string is not recognized) – traversing the trie starts 
anew so that the next character is not part of a key string already read and the trie follows the failure 
pointer to identify the new string. In the case where such occurs, with the key string not recognized, it 
implies that it is a genuine connection (Zink, 2009). Basically, the algorithm trie forms a state 
transition machine resembling the characters read. Thus, it is called Aho-Corasick automaton. It is 
efficient in space consumption – since the trie is already compressed and in complexity. It provides a 
linear search time. Its only drawback is the large number of failure pointers that can arise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Building an AhoFig. 2: Building an AhoFig. 2: Building an AhoFig. 2: Building an Aho----Corasick TrieCorasick TrieCorasick TrieCorasick Trie    
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3333.4 .4 .4 .4 Boyer Moore Algorithm (BMA)Boyer Moore Algorithm (BMA)Boyer Moore Algorithm (BMA)Boyer Moore Algorithm (BMA)    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ojugo (2017) BMA is one of the most efficient exact string matching algorithms available as it 
actually does find matches in a sub-linear search time. It achieves this by simply scanning through the 
key string from left to right. On a miss, the key string is shifted a pre-computed number of characters 
to the right until a match of the current character occurs. Then, the next character not yet matched is 
considered. Since the length of the key string and the position of the current character is known, the 
number of characters on which the match of the key string can occur can be computed. Fig. 3 shows 
example with characters matched depicted using upper-cases. What is clear on inspecting the sample 
is that the algorithm can find exact string matches in sub-linear search time. Its demerit(s) includes 
that: (a) in the search for multiple key strings in a payload – the algorithm is quite inefficient, and (b) 
each key string has to be stored in its entirety. 
    
3.5 3.5 3.5 3.5 PPPProblem Statementroblem Statementroblem Statementroblem Statement    
A major/key element in text mining is its focus on document collection (grouping of text-based 
documents) as either static (in which the documents remains unchanged) or dynamic (in which the 
document collection is characterized by its inclusion of new or updated documents over-time). But, 
challenges arise in malware detection (where codes to be detected are dynamic and always changing 
with insertion of whitespaces etc) as well as in the scenario below, we note that: 
1. Large document collections and those with very high rate of document change often pose 

performance search and optimization challenges for the various components of a text-mining 
system. How do we best resolve such issues? 

2. How can we best transform an irregular and implicitly unstructured representation into an 
explicitly structured representation? 

3. Given a potentially massive collection of words, phrases, sentences, typographical errors, layout 
artifacts that any given document can feature as well as the potentially vast number of different 
senses that each of these may have in various contexts and combinations, how can we easily 
present it to users such that they can make meaning more easily from the document? 

Text T: 

Pattern 

g c a t c a c a g a g a t t a c a c 

No match, shift 1 

g a t t a c 

Text T: 

Pattern 

g c a t c a c a g a g a t t a c a c 

No match, shift 9 

g a t t A 

Text T: 

Pattern 

g c a t c a c a g a g a t t a c a c 

Match found, continue… 

G A T TA C 

FiFiFiFig. 3: Boyer Moore algorithmg. 3: Boyer Moore algorithmg. 3: Boyer Moore algorithmg. 3: Boyer Moore algorithm    
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3.5 3.5 3.5 3.5 Study SampleStudy SampleStudy SampleStudy Sample    
The goal here, is to use string matching algorithm to find a pattern P from text T using various 
algorithms as we measure various properties for the different string matching algorithm. For the 
study, we use the textbook “Introductory University Computer Science, edited by Allenotor, Ojugo 
and Oyemade”, with text T = 7,320,103 and the pattern P = “program”.  
    
4. 4. 4. 4. FINDINGS AND DISCUSSIONFINDINGS AND DISCUSSIONFINDINGS AND DISCUSSIONFINDINGS AND DISCUSSION    
 
4.1 4.1 4.1 4.1 FindingsFindingsFindingsFindings    
Using a simple Python implementation of various matching algorithms, we compared algorithms 
based these feats:  
 
Classification AccuracyClassification AccuracyClassification AccuracyClassification Accuracy    

 

 

 

 
 
 
 
 

Fig. 4: PredictionFig. 4: PredictionFig. 4: PredictionFig. 4: Prediction    Accuracy of Algorithms in percentageAccuracy of Algorithms in percentageAccuracy of Algorithms in percentageAccuracy of Algorithms in percentage    
 
Fig 4 shows prediction accuracy for algorithms explained with graph representation. 
    
Processing SpeedProcessing SpeedProcessing SpeedProcessing Speed    
 

 
    

Fig. 5: Processing time in SecondsFig. 5: Processing time in SecondsFig. 5: Processing time in SecondsFig. 5: Processing time in Seconds    
 
Fig 5 shows processing time for the various string matching algorithms. 
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CoCoCoConvergence Timenvergence Timenvergence Timenvergence Time    

 

 
    

Fig. 6: Convergence time of matchesFig. 6: Convergence time of matchesFig. 6: Convergence time of matchesFig. 6: Convergence time of matches    
    
Fig 6 shows the convergence time of matches in which the various algorithms took in finding the 
patterns within the text. 
    
4.2 4.2 4.2 4.2 DiscussionDiscussionDiscussionDiscussion    
We provide a summary table 1 for tabular comparison: 
 

Table 3: Comparative Result 
Items Naïve Aho-Corasick BMA KMP 
Text 7,320,103 7,320,103 7,320,103 7,320,103 
Pattern  program program program program 
Convergence 3.11secs 2.96secs 1.39secs 1.19secs 
Matches |T| 1902 1829 2003 1967 
 
Looking at the results, we conclude that BMA yields the best algorithm result in majority of cases – 
because, the more long its pattern is, the more its advantage becomes significant. In tandem with Guo 
(2014), the reason being that it skips more characters during a shift so that its complexity is sub-linear 
yielding O(N=M). But, this advantage disappears if pattern is very small. KMP and Naïve algorithm 
obtain similar results (though, KMP is always a bit better). KMP is also a very good choice if the 
length of pattern is very short. We also notice that the results for shorter patterns show more 
similarities between the pattern and substrings for the given text even when there are no matches. 
These similarities require more comparisons and must be further processed to ascertain a true result. 
    
5. 5. 5. 5. RECOMMENDATIONS / CONCLUSIONRECOMMENDATIONS / CONCLUSIONRECOMMENDATIONS / CONCLUSIONRECOMMENDATIONS / CONCLUSION    
 
In many applications today, finding the appropriate content in minimal time is critical and quite 
important. Thus, string algorithms play a vital role in this. Data mining and text mining techniques 
are today employed by different groups that are working both on software and hardware levels to 
make pattern searching faster. Researchers must continue in their implementation and quest to 
improve string algorithm usage in different applications. BMA and KMP are recommended in many 
cases with their reduced complexity and computation time.  
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They have been successfully used in many applications. They may not be the best optimal algorithm 
for a case; But, they have proven to be better than most algorithms. Most text and data mining 
applications today use BMA and/or KMP for their effective and efficient functionality – due to their 
lesser search and processing time complexity. Other algorithms depends upon the type of input and 
is efficient for certain or particular application. 
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