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ABSTRACT  
 
Genetic Algorithm (GA) is one of the leading approach for solving the Examination Timetabling Problem (ETP), 
however, how the GA-chromosome is represented and the crossover operator used have been noted to have impact 
on the solution process and quality. Following an object-oriented approach, this research represents the 
chromosome as composite objects, and adapted a hybrid heuristic crossover operator for solving the ETP in Bells 
University of Technology, Ota. Modeled as an optimization problem using constraints gathered from the university 
and implemented using Java, the ETP was solved following a three-stage process, which involve the optimization of 
the generated timetable using the GA. The GA was investigated on some key parameters to determine their impact 
on the generated timetable quality and evaluated using first Order Conflict Counts (OCC) and second OCC for 
students and invigilators respectively, and using its space complexity. The GA yielded average first OCC for both 
students and invigilators of 0.0 and 0.0. Similarly, GA yielded best second OCC of 356, and average of 454.78 for 
students. The average second OCC for invigilators is 0.0. The GA recorded empirical space complexity of O(n). 
When compared with previously obtained results on the dataset used, the GA’s performance was poor; this was 
observed to be due to the crossover operator implemented, the key search operator of the GA, and not to the 
representation used. For solving large combinatorial optimization problems like the ETP, it is recommended that 
more effective crossover operator be considered. 
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1. INTRODUCTION 
 
The manual university examination timetable scheduling process consumes lots of time and resources in its 
preparation, yet the output is usually not satisfactory to all the parties concern [1, 2]. This has led to extensive 
research efforts in automated timetabling as noted in [3-7], with the goal of producing quality timetables that meets 
the need of all stakeholders while effectively utilizing system resources. 
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Genetic Algorithm (GA), a population based technique, is among the leading paradigms for solving the ETP. This is 
because GAs delivers good enough solution in very reasonable time, making GAs attractive for use in solving 
optimization problems [8, 9].  GA solutions to a problem are encoded as chromosomes. In literature, different 
approaches has been used for chromosome representation for the ETP; these approaches have been classified as 
direct or implicit [10]. The direct representation encodes the actual timetable while the implicit encodes a set of 
instructions as to how the timetable should be built. However, how the GA-chromosome is represented have been 
noted to have impact on the solution process and quality [11]. In [8], it was also noted that most of the success or 
otherwise of the GA application comes from the representation used, since this determines the kinds of operators that 
might be chosen. In literature so far consulted on Examination Timetabling with GA, different schemes have been 
adopted in representing the GA chromosome for problem solving. These schemes includes Binary/Bit String 
representation, Real-Valued representation, Integer Representation, Permutation Representation, two-dimension (m 
x n) array of integer numbers as note in [11]. No literature consulted so far was observed to have used an object-
oriented chromosome representation. 
 
This research aim at solving the ETP using GA with an object-oriented chromosome representation, and observes 
the effect of such representation on the GA’s performance. 
 
 
2. REVIEW OF RELEATED WORKS 
 
2.1 The Examination Timetabling Problem 
A number of researchers have noted the Examination timetabling problem (ETP) as a well-known NP-Complete 
combinatorial problem present in universities with a large number of students and courses, especially if the courses 
are many and the student can choose from a wide range of electives [12-14]. Operations  researchers have 
“identified the Examination timetabling problem as  a  scheduling  problem with  disjunctive  and  cumulative  
conjunctive  constraints, classified  as  NP-complete, for which no classical operations research (OR) approach is 
directly applicable.”[15]. The complexities and the challenges posed by the timetabling problem arise from the fact 
that a large variety of constraints, differing from institution to institution, some of which contradict each other, need to 
be satisfied in different institutions [14, 16]. The constraints fall into one of two category:  Hard and Soft. Fulfilling all 
hard constraint make the generated Timetable feasible. The more the soft constraints fulfilled the more desirable the 
timetable becomes. Determining the quality of timetables generated is done by an objective function, formulated 
using the hard and soft constraints stipulated by the institution and implemented in the timetable generating 
algorithm.  

 
2.2 Genetic Algorithm 
Genetic algorithms (GAs) are search methods based on principles of natural selection and genetics; they mimics the 
evolutionary process in nature by manipulating and evolving a population of solutions within a search space so as to 
obtain optimized solutions to a given search problem over a number of generations [17, 18]. GA candidate solutions 
to a search problem encode the decision variables of the search problem into finite-length strings of alphabets of 
certain cardinality. The strings are referred to as chromosomes, the alphabets are referred to as genes and the 
values of genes are called alleles [19].  
 
2.3 GA and Search Space Exploration 
GAs does not require knowledge of the problem domain during search space exploration except when a heuristic 
operator is used; however, it requires an objective function to evaluate the solution. Accumulated information is 
explored by the parent selection mechanism while genetic operators are used to explore new regions of the search 
space. Conventionally, the crossover or recombination operator is the principal operator and determines the 
performance of the GA. Carrying out exploitation, the operator seeks better solution from selected parents.  
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The mutation operator, operating as a background operator, is used to produce spontaneous random changes in 
chromosomes [20], thereby keeping the algorithm from converging on a popular solution [21].  However, when the 
population has substantially converge and crossover no longer has much effect, the mutation is used to perform 
extensive random search [11].   
 
2.4. Advantages and Limitations of GA 
Advantages that made GAs very popular include the following: 

i. GAs does not require any derivative information (which may not be available for many real-world problems) 
[18, 22]. 

ii. GAs is faster and more efficient as compared to the traditional methods [8, 9] 
iii. GAs have very good parallel capabilities [23, 24]. 
iv. GAs optimizes both continuous and discrete functions and also multi-objective problems [18, 24, 25] . 
v. GAs provides a list of “good” solutions and not just a single solution [8, 11]. 
vi. GAs always gets an answer to the problem, which gets better over the time. 
vii. GAs are useful when the search space is very large and there are a large number of parameters involved 

[26]. 
viii. GAs are robust, efficient and very general in their application and use [18, 27]  

 
However, GAs suffers from the following limitations: 

i. GAs are not suited for all problems, especially problems which are simple and for which derivative 
information is available [18, 22]. 

ii. Fitness value is calculated repeatedly which might be computationally expensive for some problems [18, 
28]. 

iii. Being stochastic, there are no guarantees on the optimality or the quality of the solution. 
iv. If not implemented properly, the GA may not converge to the optimal solution. 

 
Regardless of the above limitation, GA is attractive for use in solving optimization problems because it delivers good 
enough solution in very reasonable time.  GA is noted to be efficient, robust and versatile [18, 27].  Table 1 captures 
the pseudo code for a standard GA [29]. 
 
Table 1. Pseudo code for a standard Genetic Algorithm 
  

Pseudo Code for Genetic Algorithm 

1 Population   randomly initialize population(t)  
2 determine fitness of population(t) 
3 repeat 
4  select parents from population(t) 
5  perform crossover on parents creating population(t+1)  
6  perform mutation of population(t+1)  
7  determine fitness of population(t+1)  
8  employ replacement strategy (population) 
9 until best individual is good enough || terminating condition 
10 return Population 
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2.5 Examination Timetabling With GA: Some Issues worth Noting 
[11] noted a number of issues may make solving the ETP using GA difficult. These include the nature of the problem, 
the difficulty of devising a suitable representation of the problem, the choice of GA operations, their implementations 
and parameters, the need to decide the kind of GA to implement (Steady State, Generational, Breeder, et-cetera) 
amongst other.   
 
The following expatiate on some of these issues:    
i. Problem Type: [11] note that GA might not be effective in solving some class of examination timetabling 

problem, those problem having sub-problems characterized with “sequences of clique.”  
ii. Problem representation: Representation can be direct or implicit [10]. The direct representation encodes the 

actual timetable while the implicit encodes a set of instructions as to how the timetable should be built. [11] note 
that GA with direct representation are prone to fails because of difficulties of coordinating the effort expended on 
solving different parts of the problem; such representation may not be appropriate in all situations when solving 
problems with GA, particularly if the problem involves only binary constraints as was also noted in [30]. However, 
[2] noted that by using a direct representation of timetable and a combination of specially developed heuristic 
operators, the GA can be guided towards the best sectors of the solution space, resulting in quality timetables. 
GA therefore may needs a sort of guiding mechanism when solving problems of certain types. 

iii. Initial Solution Technique: In  [31] is was shown that the technique used in preparing the initial population or 
solution can greatly affect the quality of the final solution obtained using GA. Their used of a construction 
heuristics as against randomly creating potential solution in the initial population, improved the performance of 
the GA to produce better quality timetables and better results for different problems. 

iv. Issue of Repair Methods: Solving Examination timetabling problem using GA often require the use of repair 
method or algorithms. Repair methods are required when the timetable produced using GA operators such as 
crossover and mutation results in an infeasible timetable. A survey of repair methods is given in [32]. However, 
the used of repair method can be avoided by a careful design and implementation of the GA operators in a 
manner to avoid infeasible solutions as was done in [11]  and [33]. This is the approach adopted in this work. 

v. GA Operators Design: [2] showed that by using hybrid crossover operators, which incorporated known graph 
coloring techniques, good quality timetables can be produced, even from extremely constrained problems with a 
GA. [2] also noted that for solving he ETP, the GA operators (crossover and mutation) may need redefining to 
prevent the generation of infeasible timetables.  

vi. Use of Penalty Function & Objective Function: it is desirable that computation (of penalty and objective function) 
be fast [9]. [11] noted that using penalty-function method (involving the linear combination of weights) is 
“computationally cheap” and that choosing a penalty value is more of “common-sense” and not hard as GA 
folklore suggest. Linear combination or assignment of weights is the popular approach in literature as in [9, 10, 
33].  This was the approach used in this research. 

vii. When to Use GA in Examination Timetabling: [11] noted that GA is a good option for solving large (examination) 
timetabling problems having significant number of non-binary constraints as well as binary ones: performance is 
impeded if all constraints are binary as was also noted in [30, 34]. They suggested that it may be better to 
employ GA to search for a good algorithm than for the solution to a given problem.  

viii. Search Space Redefinition: With respect to solving the ETP, [2] noted that it may be necessary to redefine the 
GA search space to prevent infeasible timetables so as to limit problems that may arise with the hard and soft 
constraints during scheduling.  

ix. Other challenges noted in using GA are (i) None of the standard GA can backtrack when stock in a local minima 
[11].  (ii) The innate parallelism can cause problem (not sharing of information) [11]. 
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3. MATERIALS & METHODS 
 
Using Bells University of Technology, Ota, as a case-study, constraints for solving the ETP were elicited (Table 2) 
and subsequently used in modeling the ETP.   
 
Table 2: Constraint Types and Penalty Values 

Code Definition 

HC1 No student should write more than one exam at a time (that is, write two or more exams at a time) 

HC2 No teacher (staff) should be scheduled to be in more than one room at any time.  
HC3 No exam should be schedule more than one 
HC4 All scheduled venues must have adequate capacity to contain the students that enrolled for the exam.  

SC1 No student should be scheduled to sit for two non-consecutive exams in a given day. 
SC2 No student should be scheduled to sit for two consecutive exams in a day. 
SC3 No student should be scheduled to sit for three consecutive exams in a day. 
SC4 No teacher should be scheduled to invigilate two non-consecutive exams in a day. 
SC5 No teacher should be scheduled to invigilate two consecutive exams in a day. 
SC6 No teacher should be scheduled to invigilate three consecutive exams in a day 

 
In literature, HC1, HC2 and HC3 violations (see Table 2) are referred to as  first-order conflicts [35, 36]. In this 
research, second order conflicts refers SC3 and SC6 violations, third order conflict to SC2 and SC5, while fourth-
order conflicts to SC1 and SC4.  
 
3.1 Mathematical Formulation of the ETP  
Using the constraints in Table 2, the ETP is formulated as follows: 
 
3.1.1. Resource Definition 
The resources used in solving the ETP are: 

: A set of p periods (or time-slots), p1, p2, …, pp. 
: A set of d days (i.e. examination duration), : a day comprise 1 to 3 periods. 

: A set of e examinations,   

: A set of  examinations scheduled in period , that is,   

: A set of s students, , in the campus of the university 

: A set of l teachers,  in the university. 

: A set of s examination registration lists for all students in the campus, that is,  

: A set of all v venues in the campus, that is,  

 
3.1.2. Decision Variables 
All decision variables can have a value of 0 or 1. 
i.  is the instance of an examination  scheduled in period  of day . = 1 if schedule or 0 

otherwise. 
ii.  is the instance that student  enrolled for examination .  = 1 if student enrolled or 0 otherwise.  

iii.  is the instance that student  who enrolled for examination  is scheduled for venue   = 

1 if scheduled or 0 otherwise.  
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iv.  is the instance that student  is to sit for examination  scheduled for period  of day .  

= 1 if student  is scheduled or 0 otherwise.   

v. : is the instance of a teacher  scheduled to be in venue  at period  of day .  

if scheduled or 0 otherwise. 
 
3.1.3. Notations Used  
The notation  denote the number of students that enrolled for examination ,  denote the capacity of  

venue , and  denote the number of hours in period   

 
3.1.4. Assumptions 
The following are the assumption made in carrying out the research experimentation: 
 
i. There are only three (3) periods in a day, that is,:   

 
 

Where is the last period of the previous day and . 

 
ii. Each period is of a fixed 3-hour duration, that is,  

 
 
iii. All venues dedicated for use during examination are available during the entire examination period. 
 
3.1.5. Constraint and Objective Function Modelling  
The using the decision variables, the constraints (see Table 2) are modelled as follows:  
 
HC1: No student should write more than one examination at a time (period) in any given day.  
 

 
 
HC2: No Teacher should be scheduled to be in more than one venue at the same time (period) in any given day.  
 

 
 
HC3: All scheduled venues must have adequate capacity to contain the students that enrolled for the examinations 
scheduled in them. If  represent the number of students that enrolled for the examination , then:   
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SC1: No student should be scheduled to sit for two non-consecutive (or more than one) examination in a day.   
 

 
 
SC2: No student should be scheduled to sit for two consecutive examinations in a given day.  
 

 
 
where a = 1 or 2 : a + 1  3. 
 
SC3: No student should be scheduled to sit for three consecutive examinations in a day.  
 

 
 
SC4: No teacher should be scheduled to invigilate two non-consecutive exams in a day.   
 

 
 
SC5: No teacher should be scheduled to invigilate in two consecutive periods.  
 

 
 
where a = 1 or 2 : a + 1    3. 
 
SC6: No teacher should be scheduled to invigilate in three consecutive periods.  
 

 
 
 
3.1.6. The ETP Objective Function 
In this research, the objective  is defined in terms of the penalty function  as:   

 
 
where  represent the three components of the penalty function as can be 

deduced from Table 2.   
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Equation 2.11 can be written as: 

 
Where   and  represent the students and invigilator-related constraints respectively. If the number of 

student-related constraints is pairwise comparable with that of the invigilator constraints and the assigned weights 
(penalty) are same for each pair as in the case in this work (see Table 2), that is,  
 

 
 
With the objective function stated in terms of the penalty function as a minimization problem, equation 2.13 can be 
simplified to: 
 

 
 
Considering that , , and  are hard and soft constraints with varying violation consequences, the weights 

 are chosen such that .   

 
From the foregoing, the ETP can now be stated as an optimization problem as follows:  
Minimize equation (12), subject to the constraints in equations (1) to equation (9). 
 
3.2. Object-Oriented Timetable Representation 
In this research, the GA chromosome (timetable) was represented as an object, modelled using the following 
classes: Staff, Student, Examination, Registration, Venue, Period and Timetable. The GA chromosome contains an 
arraylist of alleles of time-slot or period objects. Period objects in turn contains three arraylists for examinations, 
venues and staff (invigilator) objects. Each examination object contains an arraylist of matriculation numbers of 
students in enrolment. Figures 1 illustrates the different components of the GA chromosome. 
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Figure 1: Different components contained in the timetable object. 
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3.3. Implementation of the GA Algorithm Using an OOP Approach 
To facilitate experimentation and comparison with existing result generated using Bells University of Technology 
dataset, the Genetic Algorithm was implemented or incorporated into an existing object oriented timetabling 
application previously developed and used in [37].  The application already implemented the classes used in the 
design and representation of the GA chromosome. It also has the algorithm for the standard Tabu Search 
implemented. The classes used and the interrelationship between them in the application mentioned are captured in 
Figure 2.  This application also implemented the algorithm for generating the initial timetable solution and for 
scheduling the invigilators to actual venues. With this application, the timetable generation is in four phases: (i) 
generation of the initial population (timetables) (ii) Optimizing the population using GA (iii) Assignment of students 
and invigilators to actual venues (iv) Reporting (displaying) the best individual (timetable) of the population.   
 

PersonTimetable Venue

Period

Staff«uses»

«uses»

«uses»

«uses»
Examination

Student

Registration

1

*

1..*

1

1..*

*

**

-registers for

 
Figure 2: The class relationship diagram of the application of [37]. 

 
The pseudo-code for the application is captured in Table 3. Line 7 indicates the points where the GA was called.  
 
 
Table  3: The Pseudo-code of the timetabling application used in [37] 

 Pseudo Code for the Timetabling Application 

1 Start 
2 Declare and Initialize working variables 
3 Load Data from Database (Venues, Courses, Registrations, Students, Staff) 
4 Extract Course Registration List for each student in semester 
5 Extract student’s list for each enrolled course 
6 Create Initial Solution 
7 Optimize Population suing GA 
8 Schedule Invigilators 
9 Display Timetable 
10 End. 
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Using the following variable, a formal description of the GA is given in Table 4:  
H = List of n individual forming initial GA population 
H’ = List of n individual forming final pupation 
P = List of two selected individuals (parent) 
T = List of individuals selected from H for tournament 
t = an individual (that is, a single timetable solution) 
StudSemRegL = the list of all students’ semester’s examination registration 

 
Table 4: A formal description of the implemented GA. 

Algorithm GA 

 Input: H  
 Output: H’ 
1 T   // Tournament Individuals List 
2 P  
3 t  
4             x   // the number of competing individuals, a function of H 

5 for(i = 1 to n, do) 
6        evaluateTitness(Hi) 
7 endfor 
8 while(not stopCondition) 
9          T   selectIndividualsForTournament(H,x) 
10          P   peformTornamentSelection(T) 
11          t   peformCrossOverWithMutation(P, studSemRegL) 
12          evaluateFitness(t) 
13          addToPopulation(t) 
14          normalisePopulation(H, t) 
15 endwhile 
16 H’   sort(H) 
17 return H’ 

 
3.3.1. The Crossover Operator 
The GA implements a heuristic crossover operator similar to that shown in Figure 3 as described in [2], however, in 
an object oriented manner. While ensureing feasibility, the process elicit all common exams in both periods and 
introduces some other exams in the pool or from that left over in previous crossing. 
 
 

 
 

Figure 3. A hybrid heuristic Crossover operator described in [2]. 
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3.3.2. The Mutation Operator 
The mutation operator was incorporated into the crossover function as done in [2], by adding examination into the 
current search that would otherwise not be considered until a later period. This was necessary because mutation by 
randomly picking two examination from different period and exchanging them may result in an infeasible examination 
timetables. Table 5 captures the pseudo code of the peformCrossOverWithMutation(P, studSemRegL) method, (line 
11 of Table 4).    
 
Table 5: Pseudo code for the peformCrossOverWithMutation( ) 

Pseudo Code for PeformCrossOverWithMutation()   // Multi-point 

1 Declare and Initialize working variable 

2 Create child  chromosome object 

3 While (not end of allele in parents, starting from 1st to last) 

4  Create Period Objects for child chromosome 

5  Extract examinations in opposite alleles of both parents into scheduling list 

6   Identify and extract intersecting examinations into list 

7   Add remaining unique examinations from both parents’ allele to list 

8         Add few additional unique examinations from exam pool to list // helps mutation 

9  Schedule extracted exams in list to child’s period (random selection) 

10 Endwhile 

11 While (existing unscheduled exams in list) 

12  Add additional period(s) to child chromosome // implies longer period length 

13          Schedule existings examinations in list to period 

14 Endwhile 

15 Compute Timetable Conflicts and fitness 

16 Return Child timetable. 

 
3.3.3. The GA Configuration Used 
The GA chromosome was encoded as an object. The initial population of solution were generated by randomly 
picking examination objects from a pool; this process ensured population diversity, without which the population will 
converge prematurely over a few generations [38].  The diversity introduced by the randomly generated solution have 
been observed to be responsible for driving GAs population to optimality over the generations [38].  Through 
experimentation, a population size of 100 individuals was considered suitable for this research, as too small a 
population size may result in poor mating pool while too large a size may slow down the GAs operational process 
[19] .  
 
A tournament size was adapted to the population used (10% for a population size of 100) and used for mating 
parents. The heuristic crossover which implements an embedded mutation was set to occur 100% of the time in each 
generation. Using a steady-state GA population model, a fitness-base survivor selection approach was used; this 
implies the children produced in a generation replaces the least fit individuals in the population. The implemented GA 
terminates when the set duration is reach. Table 6 summarizes the GA configuration used in this work.  
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Table 6: A Summary Description of the GA Configuration Use 

Representation Type  Direct (Object-Oriented) 

Initialization Random 

Population Size  100 (also varies) 

Population Model Steady-state (replace worst) 

Parents Selection Tournament (best two out of random 10% selected 

Number of Generations Time bound 

Crossover type Heuristic 

Mutation embeded Embeded in Crossover 

Tournament Selection Adaptive to population 

Crossover probability  1 (i.e 100%) 

Mutation probability  - 

Number of Children 1 

 
3.4. Data Gathering and Generation 
The dataset used for this research was gathered from Bells University of Technology, Ota, at the end of 1st Semester 
2012/2013 Sessions. A summary of this is given as follows:   

Total number of students 1896 
Total number of Registrations 16866 
Total Number of Examinations 443 
Total Number of Venues 25 (total capacity: 1436) 
Total number of Invigilating staff 170 

 
In order to investigate the impact of increasing student’s population on the GA algorithms, dataset of 25,000, 50,000, 
75,000 and 100,000 students population, with 443 available examinations was generated using Bells University of 
Technology dataset as seed.  Staff to student’s ratio was set at 1 to 30 and the total available venue capacity was set 
at 60% of the student population. 
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3.5 Experimental Environment 
The algorithm was implemented in Java (JDK8u54) on Windows 7 64-bit Operating system running on a Dell Inspiron 
N5110 Laptop with Intel core i5 (quad core) processor, 6 GB RAM, 700 GB HDD (Hitachi) at 5400 RPM. NetBeans 
IDE 8.02 was used as the IDE for the algorithm integration. The application has XAMPP version 3.2 installed, which 
incorporates MySQL database. 
 
3.6 Experimental Procedures 
Dataset for the ETP problem was loaded from the database and used in creating the initial timetable solutions. 
Examination were randomly picked from a pool and scheduled into the available venue spaces, while avoiding 
violation of the HC constraints (see Table 2). The number of periods in the initial solutions varied from about 21 to 28.  
For uniformity, initial solutions where normalized to 30 periods by adding additional periods and spreading scheduled 
examinations. The 30 period used implies examination duration of 10 days, or two weeks of five working days each 
for a 3-periods-in-a-day examination schedule.  The generated initial solutions were then optimized using the GA, 
after which invigilators’ scheduling was done. Two sets of experimental runs were conducted; a set using the Bells 
University dataset was conducted for 10 times and the other set using generated data for student population of 25, 
000, 50,000, 75,000 and 100,000 was conducted for three times. Since the GA used a population of individual (i.e. 
timetables), a best solution, GA(best), that is one with lowest penalty cost, was captured for each run, the average of 
the best solutions for the two sets of experimental runs (i.e. GA(avgB)) were also determined as well as the average 
penalty cost for the population for all the runs (GA(AvgAR) for each of the set. The results of the experimental runs 
were harvested for analytical purposes and reported in the next section.  
 
4. RESULTS AND DISCUSSION 
 
Appendix A is an extracted page of one of the generated timetable using the actual dataset from Bells University of 
Technology.  
 
4.1  1st Experimental Run: The Quality of Timetables Generated by GA 
Table 7 summarizes the results obtained from the 1st experimental run and captures the quality of timetable 
generated in terms of violated conflicts. No hard (HC) constraints were violated because this was prevented in the 
scheduling process. However, the GA did not succeed in eliminating the 2nd OC constraint violation.  
 
Table 7: Summary of Results from 1st set of Experimental Runs  
Parameters: Student Pop = 1896, GA Pop = 100, Simulation time = 300s (5 min)). 

  GA GA (avg) GA(avgAR) 

Constraint Violation  Best of 10 Runs Avg. of Best Avg. of All Runs 

1st Order Conflict Count (OCC)  0 0.0 0.0 

2nd OCC  356 
 

454.78 
 

- 

3rd OCC  2402 
 

2584.89 
 

- 

% improvement  41.0 13.2 28.6 
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.4.2 The Effect of increasing Processing Time GA on Timetable Quality 
Using the database of 25000 students, Figure 4 showed the effect of varying the processing time from 0 to 5,400 
seconds (i.e. 1½ hours) for the GA. The timetable quality improves with time, but at a slow rate. 
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Figure 4: The effect of increasing the processing time on Timetable Quality 
 
4.3  2nd Experimental Run: The Quality of Timetables Generated 
Table 8 summarizes the results on the quality of timetables generated from the second set of experimental runs 
using the generated dataset of 25,000 student population. Again, the GA did not eliminate instances of 2nd OC (the 
SC3) violation; thought the best individual improved by 29.2%, the overall population recorded a 49.2% improvement 
during the 1½ hour experimental run.  
 
Table 8: Summary of Results from 2nd Set of Experimental Runs  
Parameters: Student Pop = 25,000, GA Pop = 100, Simulation time = 5400s (1½ hrs). 

 
GA’s inability to eliminate the SC3 constraint violation is certainly due to the limitation of the crossover operator, the 
key search operator in GA, employed in this project. From this observation, It is needful to design or investigate other 
heuristic crossover operators on the GA algorithms performance on the ETP. 
 
 
 
 
 
 

  GA GA (avg) GA(avgAR) 

Constraint Violation  Best of 10 runs Average of 10  

1st OCC  0 0.0 0.0 

2nd OCC  4801 5228.5 - 

3rd OCC  39624 33375.0 - 

% Improvement  29.2 23.9 49.2 
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4.4 Effect of varying GA Population on Timetable Quality:  
Figure 5 shows the effect of varying GA population on Timetable quality from 25 to 225 in steps of 50, while holding 
the GA generation as 3000. The Timetable quality appears to be decreasing with increasing GA population. One 
would have expected the reverse, since more population will imply better coverage of the search space. This 
unexpected outcome may however be attributed to the nature or complexity of the problem and to the stochastic GA 
population generation process used in this experiment. It can also be related to the apprarent ineffectiveness of the 
implemented crossover operator as Figure 5 reflects.    
 
 

 
 

Figure 5: The Effect of varying GA population on Timetable Quality 
 
 
 
4.5 Effect of varying Student Population on Timetable Quality 
Using the generated databases, the effect of varying student’s population from 25,000 to 100,000, in steps of 25,000 
is illustrated in Figure 6. The timetable quality generated by the GA algorithm degraded in a fairly linear manner with 
increasing students’ population. It can be concluded that with increasing problem complexity, the performance of GA 
drops. 
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Figure 6: The effect of varying student’ population on the Timetable quality. 
 
 
4.6 Evaluation based on Space Complexity 
The generated databases of students’ population varying from 25,000 to 100, 000 in steps of 25,000 was used to 
determine the empirical Space Complexity of the GA Algorithm; its memory consumption differs before and after 
garbage collection (GC). The empirical space complexity of the GA is concluded to be of order . Figure 7 

illustrates this.  
 

 

 
 

Figure 7: The GA Space Complexity of GA (with and without GC). 
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5. CONCLUSION 
 
This research implements a Genetic Algorithm that used an adapted heuristic crossover operator on an object-
oriented chromosome representation in solving the Examination Timetabling Problem.  The implemented GA was 
experimented with using the dataset from Bells University of Technology Ota. The performance of the GA with the 
adapted heuristic crossover operator was evaluated using standard timetabling metrics. Results obtained showed 
that the GA’s performance was poor in comparison with previously obtained results on the same dataset.  The poor 
performance of the GA was attributed to the ineffectiveness of the crossover operator used, the GA’s key search 
operator and not to the object-oriented representation used for its chromosome, It is expected that with a better or 
more effective crossover operator, the GA’s performance on this dataset will improve.  A future research work could 
look into different approaches for implementing cross-over operators for GAs, particularly when solving highly 
constrained problems like the ETP.  
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BELLS UNIVERSITY OF TECHNOLOGY, OTA 

EXAMINATION TIMETABLE 

 

--------------------------------------------------------------------------------------

---------------------------------- 

|       Days    |   Courses/No of Students                |  Venues(Count) |   

Invigilators' IDs                        |                                   

--------------------------------------------------------------------------------------

---------------------------------- 

|     Mon       | GES101(589)-MPH(240);HallD(230);B11(56);B10(56);BioCLab(7)| MPH(240)       

| 221; 185; 121; 104; 103                    | 

| 9.00am-12.00pm| MEE203(172)-B9(56);Rm6(56);Rm5(56);BioCLab(4)| HallD(230)     | 578; 

159; 555; 581; 582                    | 

|               | ITP401(71)-Rm1(56);BioLab3(15)          | B11(56)        | 274; 135                                   

| 

|               | HRM303(19)-BioLab1(19)                  | B10(56)        | 302; 200                                   

| 

|               | MEE403(15)-ChemLab2(15)                 | B9(56)         | 296; 272                                   

| 

|               | BIO203(15)-ChemLab2(15)                 | Rm6(56)        | 171; 276                                   

| 

|               | GES313(1)-BioLab3(1)                    | Rm5(56)        | 99; 586                                    

| 

|               |                                         | Rm1(56)        | 89; 236                                    

| 

|               |                                         | ChemLab2(30)   | 38                                         

| 

|               |                                         | BioLab1(19)    | 254                                        

| 

|               |                                         | BioLab3(16)    | 253                                        

| 

|               |                                         | BioCLab(11)    | 178                                        

| 

--------------------------------------------------------------------------------------

---------------------------------- 

|     Mon       | ACC303(55)-Rm1(55)                      | HallD(133)     | 39; 329; 

332                               | 

| 12:30pm-3.00pm| AMS427(1)-Rm1(1)                        | Rm1(56)        | 381; 351                                   

| 

|               | BDT309(4)-BioCLab(4)                    | Rm5(56)        | 365; 238                                   

| 

|               | ARC405(13)-BioCLab(13)                  | B6(40)         | 362                                        

| 

|               | MKT303(6)-BioLab3(6)                    | PhyLab1(30)    | 123                                        

| 

|               | NUD311(2)-BioCLab(2)                    | BioLab1(30)    | 240                                        

| 

|               | TML501(1)-BioCLab(1)                    | BioLab2(30)    | 508                                        

| 

|               | FSB505(2)-BioLab3(2)                    | PhyLab2(30)    | 552                                        

| 

|               | ITP303(51)-Rm5(51)                      | ChemLab2(30)   | 506                                        

| 

|               | PMT307(4)-Rm5(4)                        | ChemLab1(30)   | 473                                        

| 

|               | PHY309(5)-BioLab3(5)                    | BioCLab(20)    | 505                                        

| 

|               | FDT201(5)-BioLab3(5)                    | BioLab3(20)    | 551                                        

| 
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|               | ECO303(39)-B6(39)                       | B5(14)         | 550                                        

| 

|               | BDT413(2)-BioLab3(2)                    |                |                                            

| 

|               | BTE403(2)-BioLab1(2)                    |                |                                            

| 

|               | MIC403(10)-BioLab1(10)                  |                |                                            

| 

|               | MIC303(14)-BioLab1(14)                  |                |                                            

| 

|               | BME407(1)-Rm5(1)                        |                |                                            

| 

|               | ARC305(25)-ChemLab2(25)                 |                |                                            

| 

|               | BME305(6)-BioLab2(6)                    |                |                                            

| 

|               | EEE413(28)-PhyLab1(28)                  |                |                                            

| 

|               | BUS101(133)-HallD(133)                  |                |                                            

| 

|               | URP409(2)-PhyLab1(2)                    |                |                                            

| 

 


