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ABSTRACT 
 
The Shewhart classic control charts are based on the normality assumption and would fail to properly monitor an 
asymmetric distribution. Data non-normality is a common problem encountered in statistical process control. Most data 
that occur naturally tends to depart from normality. Transformation is one of the convenient and easy ways to remedy 
the problem. In this research, Box-cox and Johnson transformation were used out of many existing normalizing 
transformation tools to transform the data to approximately normal distribution. The monthly rainfall data in South 
West, Nigeria, were collected. The individual Shewhart control charts were constructed for Abeokuta, Oyo, Akure and 
Ikeja transformed rainfall data. The false alarm rate was used to measure the performance of the control charts under 
each transformation. Box-cox transformation gives lower false alarm rate for Abeokuta, Oyo and Ikeja while Johnson 
transformation gives lower false alarm rate for Akure.  
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1.  INTRODUCTION 
 
Statistical control chart is widely used by modern manufacturing and service organizations. A control chart is a 
statistical scheme usually allowing graphical implementation devised for the purpose of checking and monitoring the 
statistical stability of a process. Control charts are useful for tracking statistics over time and detecting the presence of 
special cause. The special cause results in variation that can be detected and controlled. Common cause variation, on 
the other hand, is variation that is inherent in the process. A process is in control when only common causes- not 
special causes affect the process output. Shewhart type control charts are the most commonly used method to test 
whether or not a process is in control. Its component include a center line and two control limits. The basic idea of 
shewhart type control chart is that given a quality measurement which is independently and identically follows normal 
distribution, k-sigma limits would be used to detect an out of control signal. However, the assumption of having 
independently identical distributed normal population is invalid in many cases, especially encountered frequently in 
real application. Burr (1967) studies the effect of non-normality on the control chart considering various degrees of 
skewness and kurtosis. He determines constants for each degree of non-normality.   
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He discussed the effect of non-normality and provided appropriate control constant for different non-normal 
population. Padgett et al. (1992) examine the impact of non-normality on the design scheme in (i) when µ and σ are 
estimated by their usual estimators, i.e. for µ the mean of the sample means and for σ the mean sample standard 
deviation or the mean sample range. They also conclude that the in-control probability of signaling of both charts 
greatly increases under non-normality.  Alwan et al. (1995) examine 235 quality control applications and find that in 
most cases the assumptions of normality and independence are not fulfilled, resulting in incorrect control limits. The 
impact of non-normality on the performance of the control chart can be substantial.  Woodal (1997) pointed that, since 
the statistics used for monitoring with control chart data usually have underlying distributions which are skewed to the 
right, the traditional k-sigma limits for the Shewhart chart may be inappropriate. Schwertman (1997) proposed some 
probability based methods for determining control limits in order to improve the control charts performance, they 
pointed out that control chart properties are determined by the reciprocals of the tails areas, but most approximations, 
including normal approximation, perform the poorest in the tails of a distribution. But control chart properties are 
determined by the reciprocal of the actual tail areas. Chen and Cheng (2007) utilized the Johnson distribution and 
William’s (1989) cost model to model an X-bar economic statistical control chart within Weibull distribution failure 
mechanism for non-normal data.  
 
To overcome the problem of non-normality, simplified transformation tool is applied. Normalizing transformations do 
not intrinsically change the relative positioning of the data values, but re-express the data while preserving the rank 
order, to a scale that allows the normal distribution to serve as a benchmark for interpretation and judgment. Among 
the transformation methods commonly used are the power transformation, Johnson or Pearson distribution system 
and Box-Cox procedure (Alwan, 2000). This research work examines how to handle non-normal data, transforming it 
into normal distribution using appropriate transformation tools. By using the statistics of monthly rainfall in south-west, 
Nigeria from the year 1981-2015, we test whether this variation conform to normal distribution. If not the data are 
transformed using the appropriate transformation tool to show the variation in measurements during the time period.  
 
2. RELATED LITERATURE  
 
2.1 Shewhart Control Charts 
A control chart is one of the primary techniques of statistical process control (SPC). It is a graphical display of a quality 
characteristic that has been measured or computed from a sample, versus the sample number or time. A control chart 
always has a central line (CL) for the average, an upper line for the upper control limit (UCL) and a lower line for the 
lower control limit (LCL). These lines are specified from historical data. Comparing current data to these lines, we can 
decide whether the process variation is in-control or out of control. In the first case the process is assumed to be in 
control, and no action is necessary, whereas in the second one, investigation and corrective action are required to find 
and eliminate the assignable cause or causes responsible for this behaviour. The control chart is also a very useful 
process monitoring technique, when unusual sources of variability are present. Thus, the systematic use of a control 
chart is an excellent way to reduce variability. A general model for a control chart is called Shewhart control chart 
(Maragos, 2015). 
 
Control charts have four key features: 

1. Data points are either averages of subgroup measurements or individual measurements plotted on the 
cartessian axis and joined by a line. Time is always on the x-axis. 

2. The Center Line is the average or mean of the data points and is drawn across the middle section of the 
graph, usually as a heavy or solid line. 

3. The Upper Control Limit (UCL) is drawn above the center line and often marked as "UCL". This is often called 
the “+ 3 sigma” line.  
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4. The Lower Control Limit (LCL) is drawn below the center line and often marked as "LCL". This is called the “- 
3 sigma” line. 

 
The general formula for control limits are:  

        (1) 

 
where y is a sample statistic that measures some quality characteristic of interest, µy  is the mean of y and σy the 
standard deviation of y. k is the “distance” of the upper and lower control limits from the center line in terms of the 
standard deviation units. k is often taken as 3, which means that the 99.73 % of all the observations will fall within the 
control limits under the normality assumption (Sharma, 2003). 
 
2.2 Individual Control Chart 
There are many process monitoring problems where application of the rational subgrouping principal leads to a 
sample size of n = 1. The traditional method of dealing with the case is to use the shewhart control chart to monitor the 
process mean. The individual control chart, although, as indicated by Borr et al. (1999), is easily implemented and can 
assist in identifying shifts and drifts in the process over time, one of its two widely cited disadvantages is that the 
performance of the chart can be adversely affected if the observations are not normally distributed. Thus, the 
individual chart is not robust at all to the normality assumption if false alarms are a concern. To enhance the traditional 
chart, the main purpose of which is to have a quicker signal. Kittlitz (1999) made the long – tailed, positively skewed 
exponential distribution by taking the fourth root of the data. The transformed data thus can be plotted conveniently on 
an individual charts. The rationale for the use fourth – root transformation of the exponential distribution is that it 
produces essentially a bell-shaped distribution. The usual interpretations can then be easily made for prompt attention 
if deterioration occurs or captured quickly for an improvement. Borr et al. (1999) showed that average run length (ARL) 
performance of the shewhart individuals control chart when the process is in control is very sensitive to the 
assumption of normality.  
 
2.3 Box-Cox Transformation 
The most common approach nowadays to deal with non- normal data in quality related applications involves the use of 
the Box – cox transformation, as articulated by Box & Cox (1964).  Box-Cox transformation mainly applies a 
deterministic power function to the raw data by using the estimate of the power transformation parameter, λ. 
Therefore, the estimation of λ is crucial. The original proposal of the methodology (Box and Cox, 1964) involved the 
maximum likelihood estimation (MLE).  
 
2.4 Johnson Transformation Method 
Johnson (1949) provided an alternative to the Pearson system of curves for modeling non- normal distributions. This 
approach was to start with a small set of curves capable of approximating the shape of a wide spectrum of probability 
distributions and then to find simple transformation that would convert these curves into the standard normal 
distribution. The Johnson system is able to closely approximate many of the standard continuous distributions through 
one of three functional forms and is thus highly flexible. The corresponding to each pair of mathematically possible 
values of skewness and kurtosis, any data set can be fitted by a member of the Johnson families such as Su, SL, and 
SB.  
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This family of distributions is perhaps the most versatile choice. It is based on a transformation of the standard normal 
variable, and includes four forms. 
i. Unbounded (SU): The set of distributions that go to infinity in both the upper or lower tail. 
ii. Bounded (SB): The set of distribution that have a fixed boundary on either the upper or lower tail, or both. 
iii. Log Normal (SL): A border between the unbounded and bounded distribution forms. 
iv. Normal: A special case of the unbounded form. 
 
The fact that the Johnson system involves a transformation of the raw variable to a normal variable allows estimating 
of the percentile of the fitted distribution to be calculated from the normal distribution percentiles, for use in control 
limits calculations on the individuals chart or for capability analysis thus, although capability indices and control limits 
are generally only defined for normal variables, this approach allows their calculation for all distribution types. Many 
others have shown that the use of Box-cox and Johnson transformations would help quality professionals to perform 
correct process analysis using both control charts for process stability and capability indices for process capability to 
meet customer specifications Kilink et al. (1999). 
 
3.   METHODOLOGY  
 
This section presents the methodology adopted in this research study to transform non-normal data to normal data 
using Box-cox transformation method and Johnson transformation method. The probability plot is used to assess 
whether or not the data set is approximately normally distributed. The data are plotted against a theoretical normal 
distribution in such a way that the points should form an approximate straight line. Departures from this straight line 
indicate departures from normality. The individual control chart is then plotted to know if the process is within control or 
out of control. 
 
3.1  Method of Data Collection 
The study uses secondary source of data collection. The data collection for this research was compiled for future use 
and was collected from the Nigeria Meteorological Agency. The data collected is monthly rainfall in some selected 
states in south-west, Nigeria. Four states were randomly selected which include Ondo, Ogun, Lagos and Oyo.  
 
3.2  The Individual control charts                 
Individual control charts are used to monitor individual value.  
 
The central limit and sigma (σ) are estimated from the data. The chart central limit is estimated using the formula: 
 

  =        (2) 

 
The standard deviation is estimated as: 

  σ =    where       (3) 

 

where  = , Ri = / xi – xi -1/ and d2 =  =  

 
 
 



  

 
 
 
 
 
 

117  
 

Proceedings of the 16th iSTEAMS Multidisciplinary 
Research Nexus Conference Vol 16 Series 2   

The Federal Polytechnic, Ilaro, Nigeria -  
www.isteams.net  

 
  

The lower and upper control limits for the individual chart are calculated using the formulas: 

         (4) 

 
where m is a multiplier (usually set to 3) chosen to control the likelihood of false alarm (out-of-control the signals when 
the process is in control)  
 
3.4 Box-Cox Transformation     
We use λ to estimate the parameter of the Box-cox transformation as well as an alternative method to determine 
plausible value for it. The former is accomplished by defining a grid of value for λ and further perform a normality test 
on the λ transformed data . The optimum value of λ, say λ*, is such that the p-value from the normality test is the 
highest. The set plausible value is determined using the inverse probability method after plotting the p-value against 
the value of λ on the grid. 
  
Let y = (y1 , y2 … yn) be the data on which Box-cox transformation is to be applied. The transformation used herein is 
defined as:  
  

         (5) 

 
Such that, for unknown  λ,  
 
         (6) 
 
Where yλ is the λ-transformation data, x is the design matrix (possible covariates of interest),  is the set of 
parameters associated with the λ -transformed data, and   is the error term. The aim of equation (5) is that  

  and  ∈ ~N(0, σ2). 
Minitab estimates the optimal value of λ from the data and displays a plot.  
 
3.5         Johnson Transformation Method   
The practical solution is to transform the data and drive them towards normality. Basically, the Johnson transformation 
computes an optimal transformation function from three flexible distribution families (SU, SB, SL). This transformation 
transforms any continuous random variable into a standard normal variable Z using general form: 
 

        (7) 

 
a and b are shape parameter, µ is a location parameter and g(x) is a function defining the Johnson system of families, 
determine as:  

  (8) 
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3.6  Anderson-Darling Normality test    
The Anderson-Darling test (Anderson and Darling, 1954) is a statistical test of whether a given sample of data is 
drawn from a specific distribution. It is one of the most powerful statistical tools for detecting most departures from 
normality. The test reject the hypothesis of normality when the p-value is less than or equal to 0.05 failing the 
normality test allows you to state with 95% confidence that data does not fit the normal distribution. Passing the 
normality test only allows you to state no significant departure from normality was found. The Anderson-Darling test 
statistic is defined as: 
     (9) 

 
where n=the sample size,  is the cumulative distribution function for the specified distribution. 
 
4.  RESULTS  
 
In this section, the monthly rainfall in Abeokuta, Oyo, Ikeja and Akure would be analyzed. The sample sizes taken for 
each location were large enough for the possibility of a good knowledge of probability distribution. 
 
4.1 Tests for Normality 
Figure 1 shows the plot of histogram and the normal distribution curve for data from each state. 
 

 
Fig1: Histogram of various states. 
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From Figure 1, it can be seen that the original rainfall data from various states are not normal, since not all the bars fall 
under the normal distribution curve. The mean value of rainfall in Abeokuta is 117.8 with standard deviation of 89.72 
out of 371 observation, in Oyo the mean value is 137.1 with standard deviation of 90.15 out of 378 observation, in 
Ikeja the mean value is 127.9 with standard deviation of 91.56 out of 370 observation, in Akure the mean value is 
134.1with standard deviation of 111.4 out of 399 observation. 
  
Figure 2 below shows the probability plot and Anderson Darling test for the original data of the monthly rainfall in the 
selected states. 
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Fig 2: Probability plot and Anderson Darling test for the original data of the monthly rainfall in the selected 
states. 

 
The Anderson Darling test for Abeokuta is 4.247, Oyo is 2.514, for Ikeja is 3.863, for Akure is 9.829. The Anderson 
Darling test for each state in south west, Nigeria, shows P-value less  than 0.05 which indicates that the set of data 
are not normal. From the discussion of result above, it is observed that the set of data were not normal, therefore there 
is need to transform. 
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4.2 Tranformation 
4.2.1 Box-Cox Transformation 
 
Table 1: Box-Cox Optimum Lambda, Original data AD values and Transformed data AD values for each  
               location. 

Location Optima Lambda Original Data AD Values 

Transformed Data AD 

Values 

Abeokuta 0.32 4.247 5.354 

Oyo 0.39 2.514 4.657 

Ikeja 0.36 3.863 4.948 

Akure 0.26 9.829 4.657 

 
Table 1 shows the lambda values that best transform the original data for each location together with the Anderson 
Darling values for original and transformed data using Box-cox method in Minitab package. 
 
4.2.2 Johnson Transformation 
 
Table 2: Johnson Type, Transformation Functions, Original data AD values and Transformed data AD values 

for each location. 
Location Type of 

Transfor-
mation 

Transformation Function Origin-al 
Data AD 
Values 

Transfo-
rmed Data 
AD Values 

Abeokuta   4.247 3.365 

Oyo  
 

2.514 7.283 

Ikeja  
 

3.863 5.841 

Akure  
 

9.829 0.576 

 
Table 2 gives type of Johnson transformation, Transformation function, Original data AD values and Transformed data 
AD values for each location. 
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Table 3: Individual Control Charts Limits and False Alarm Rate for the Original data, Box-Cox transformed 
data and Johnson transformed data for various locations. 

Location 

Original Data Box-Cox Transformed Data Johnson Transformed Data 

LCL UCL FAR LCL UCL FAR LCL UCL FAR 
Abeokuta -103.0 338.7 0.0189 0.981 7.453 0.0108 -2.413 2.365 0.0135 

Oyo 1.90 10.99 0.0344 0 5.582 0.0053 0 2.702 0.0238 

Ikeja 0 3.024 0.0243 0 263.5 0.0081 0 5.033 0.0135 

Akure -138.8 407.1 0.0318 1.170 5.374 0.0132 -2.462 2.462 0.0079 

 
Table 3 gives Individual Control Charts Limits and False Alarm Rate for the original data, Box-Cox transformed data 
and Johnson transformed data for various locations. Box-Cox transformation gives the smallest false alarm rate for 
Abeokuta, Oyo and Ikeja data while Johnson transformation gives the smallest false alarm rate for Akure data. This 
showed that Box-cox transformation is the best tool to transform Abeokuta, Oyo and Ikeja monthly rainfall data to 
approximate normal distribution and Johnson transformation is the best for Akure monthly rainfall data.  
 
5. CONCLUSION  
 
The study was set to monitor the monthly rainfall in Abeokuta, Oyo, Ikeja and Akure using Individual Control Charts 
which is based on the assumption of normality. The observed data was tested for normality using histogram, p-p plot 
and Anderson-Darling. It was shown that monthly rainfall data from various locations were not normally distributed. 
Box-cox and Johnson transformation tools were employed for appropriate transformation. Data transformed using 
Box-cox and Johnson transformation tools were used to construct Individual Control Charts. These were compared on 
the bases of False Alarm Rate with the control charts of original data. The result showed that the false alarm rate of 
the transformed data is low when compared with the original monthly rainfall in south west, Nigeria. However, out of 
the two transformation tools chosen, Box- Cox transformation performed better than the Johnson transformation in 
three of the four locations.  
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