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ABSTRACT   
 
This study compared four different transformation techniques by applying a simple linear regression on 
raw and transformed data. The R2 of each model was obtained and a test on the significance of these R2 
was carried out. Also, the rxy(coefficient of correlation) were also obtained. The data used is a secondary 
data consisting of 53years (1964-2016) of the infant mortality rate in Nigeria 
(https://www.ceicdata.com/en/nigeria/health-statistics/ng-mortality-rate-infant-per-1000-live-births). The 
rxy were also compared and the results, 95.8%, 95.8%, 96.2%, 93.0%, and 92.9% respectively. The R2 
obtained for the raw data, logarithm, square-root, square and inverse are as follows: 91.8%, 91.7%, 92.5%, 
86.6% and 86.4% respectively. However, the R2 obtained for the raw data, logarithm, square-root, square 
and inverse compete favourably but the performance of inverse transformation suits the data most in 
terms of model accuracy. 
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1. INTRODUCTION 
 
Data transformation is a process of converting data or information from one format to another, usually 
from the format of source system into the required format of a new destination system. There are a great 
variety of possible data transformations, from adding constants to multiplying, squaring, or raising to a 
power, converting to logarithmic scales, inverting, taking the square root of the values and even applying 
trigonometric transformation such as sine wave transformation. Simple linear regression captures the 
linear relationship between the expected value of Y and an independent variable say X. If linearity fails to 
hold, even approximately, it is sometimes possible to transform either the independent or dependent 
variables in the regression model to improve linearity. When fitting a linear regression model, one assumes 
that there is a linear relationship between the response variable and each of the explanatory variable. 
However, in many situations there may instead be a non-linear relationship between the variables.  
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This can sometimes be remedied by applying suitable transformation to some (or all) of the variables. 
Transformations can be used to correct violations of assumptions such as constant error variance and 
normality. The primary reasons for data transformation, as they are used for improving the compatibility 
of data with assumptions underlying a modelling process include viz: to stabilize the variance of the 
dependent variable, to normalize and linearity. Many statistical procedures assume that the variables are 
normally distributed. A significant violation of the assumption of normality can seriously increase the 
chance of the researcher committing either a type I or II error (depending on the nature of the analysis 
and the non-normality). However, Mecceri (1989) points out that true normality is exceedingly rare in 
education and psychology. Thus, one reason researchers utilize data transformations is improving the 
normality of variables. Zimmerman (1995, 1998) pointed the importance of normality in all statistical 
analysis whether parametric or non-parametric tests.  
 
Two other reasons for non-normality are the presence of outliers and the nature of the variable itself. 
Judd and Clelland (1989) argued that outliers’ removal is desirable, honest, and important. However, not 
all researchers feel that way (Orr, etal, 1991). Transformation can be useful to a researcher needing to 
know whether a variable’s distribution is significantly different from a normal (or other) distribution 
(Rosenthal (1968), and Wilcox (1997)). Most people find it difficult to accept the idea of transforming data. 
Turkey (1977) probably had the right idea when he called data transformation calculation “re-expression” 
rather than “transformations Tabachnich and Fidell (2001) recommended transformation as a remedy for 
outliers and for failures of normality, linearity, and homoscedasticity, they are not universally 
recommended. Different techniques of transformation has been treated in different forms (see Mc Neil 
(1977),Velleman and Hoaglin, (1981)  but this research aims to select the best technique to use in terms 
of model adequacy. 
 
2. METHOD 
 
The four (4) methods of data transformation techniques adopted is briefly explained using their 
mathematical formula.  
 
2.1 Different Transformation Techniques 
The linear relationship assumed in the preceding analysis may be inappropriate in some problems. Indeed, 
non-linearities may be expected in the real world situations. Bearing in mind the complexity in analysis, 
model transformation becomes inevitable. This is to be able to use a regression model of simple forms in 
the transformed variables, rather than a more complicated one in the original variables. Some of the most 
common forms (and transformations) of non-linear models as used in this research are presented by the 
following polynomials. 
 
i) y = 0 + 1x + 2x2 +…+ kxk  + e                                                              (1) 
 
This is usually called the curvilinear regression model.    

Let zi = xi,  (i=1,2,…,k). Then 
  Y = 0 + 1z1 + 2z2  +…+ kzk  +  e                                            (2)  
ii) y = 0 + 1x1

-1  +  2x2
-1 + kxk

-1  +  e                                                         (3) 
 let  zi =  xi

-1 (called inverse or reciprocal transformation), then  
 
 y = 0+1z1 + 2z2 +…+kzk + e                                                                (4) 
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iii) exxxy k

k
 ...2

2
1

10                                                                        (5) 
 

Taking logarithm of both sides (called the log-transformation), we have 
 
1ny = 1n0 + 11nx1 + 21nx2 +…+k1nxk + e                                        (6) 
 
Or equivalently  'y  = '

0
  + '

1
 z1 + '

2
 z2  +…+ '

k
zk+ e                      (7) 

 

iv) exxxy kk  2
1

2
1

22
2

1

110 ...                            (8) 
 

 2
1

ii xz  (called the square root transformation) 

 
 y′ =  0 +  1z1  + 2z2  =…+ kzk  +  e                                                    (9) 
 
v) Given a production function (say), 

 y =    
v

xx 2211   
 
on transformation, this gives the equation 
 




 2211 xxy v                                                                         (10) 

Thus each observation on output (y) should be raised to the power of v
  and each observation on 

capital (x1) and labour input (x2) are raised to power p. This is an example of power transformation of 
the variables. 
 
Note: After transforming the variables, the usual method of estimating the parameters is employed 
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3. RESULTS 
 
The results of this research will be presented in a tabular form which will be followed by the discussions 
on the tables listed.             
 
Table 1:   Infant Mortality Rate for Nigeria, Number per 1,000 Live Births, Annual               (From 1964 
to 2016) 

X Y (per 1000) Y LOG10(Y) SQRT(Y) SQR(Y) INV(Y) 
1 195.7 195700 5.29159083 442.3799 38298490000 0.00000511 
2 191.2 191200 5.28148789 437.2642 36557440000 0.00000523 
3 186.9 186900 5.2716093 432.3193 34931610000 0.00000535 
4 182.8 182800 5.26197619 427.5512 33415840000 0.00000547 
5 178.4 178400 5.25139485 422.3742 31826560000 0.00000561 
6 174.1 174100 5.24079877 417.2529 30310810000 0.00000574 
7 169.4 169400 5.22891341 411.5823 28696360000 0.00000590 
8 164.6 164600 5.21642983 405.7093 27093160000 0.00000608 
9 159.6 159600 5.20303289 399.4997 25472160000 0.00000627 

10 154.6 154600 5.18920949 393.1921 23901160000 0.00000647 
11 149.5 149500 5.17464119 386.6523 22350250000 0.00000669 
12 144.7 144700 5.16046853 380.3945 20938090000 0.00000691 
13 140.1 140100 5.14643814 374.2993 19628010000 0.00000714 
14 135.9 135900 5.13321946 368.6462 18468810000 0.00000736 
15 132.2 132200 5.12123146 363.5932 17476840000 0.00000756 
16 129.3 129300 5.11159852 359.5831 16718490000 0.00000773 
17 127.0 127000 5.10380372 356.3706 16129000000 0.00000787 
18 125.4 125400 5.09829754 354.1186 15725160000 0.00000797 
19 124.4 124400 5.09482038 352.7038 15475360000 0.00000804 
20 124.0 124000 5.09342169 352.1363 15376000000 0.00000806 
21 124.1 124100 5.09377178 352.2783 15400810000 0.00000806 
22 124.5 124500 5.09516935 352.8456 15500250000 0.00000803 
23 125.1 125100 5.09725731 353.6948 15650010000 0.00000799 
24 125.6 125600 5.09898964 354.4009 15775360000 0.00000796 
25 126.0 126000 5.10037055 354.9648 15876000000 0.00000794 
26 126.2 126200 5.10105935 355.2464 15926440000 0.00000792 
27 126.2 126200 5.10105935 355.2464 15926440000 0.00000792 
28 126.0 126000 5.10037055 354.9648 15876000000 0.00000794 
29 125.6 125600 5.09898964 354.4009 15775360000 0.00000796 
30 125.3 125300 5.09795107 353.9774 15700090000 0.00000798 
31 124.6 124600 5.09551804 352.9873 15525160000 0.00000803 
32 123.6 123600 5.09201847 351.5679 15276960000 0.00000809 
33 122.2 122200 5.08707121 349.5712 14932840000 0.00000818 
34 120.2 120200 5.07990447 346.6987 14448040000 0.00000832 
35 117.8 117800 5.07114529 343.22 13876840000 0.00000849 
36 115.2 115200 5.06145248 339.4113 13271040000 0.00000868 
37 112.3 112300 5.05037976 335.1119 12611290000 0.00000890 
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X Y (per 1000) Y LOG10(Y) SQRT(Y) SQR(Y) INV(Y) 
38 109.2 109200 5.03822264 330.4542 11924640000 0.00000916 
39 106.1 106100 5.02571538 325.7299 11257210000 0.00000943 
40 102.9 102900 5.01241537 320.7803 10588410000 0.00000972 
41 99.8 99800 4.99913054 315.9114 9960040000 0.00001002 
42 96.5 96500 4.98452731 310.6445 9312250000 0.00001036 
43 93.2 93200 4.96941591 305.2868 8686240000 0.00001073 
44 90.0 90000 4.95424251 300 8100000000 0.00001111 
45 87.0 87000 4.93951925 294.9576 7569000000 0.00001149 
46 83.9 83900 4.92376196 289.655 7039210000 0.00001192 
47 81.1 81100 4.90902085 284.7806 6577210000 0.00001233 
48 78.3 78300 4.89376176 279.8214 6130890000 0.00001277 
49 75.7 75700 4.87909588 275.1363 5730490000 0.00001321 
50 73.3 73300 4.86510397 270.7397 5372890000 0.00001364 
51 71.0 71000 4.85125835 266.4583 5041000000 0.00001408 
52 69.0 69000 4.83884909 262.6785 4761000000 0.00001449 
53 66.9 66900 4.82542612 258.6503 4475610000 0.00001495 

 
3.1 Test of R2 Using F-Statistics 
 
We test for the significance of R2 using the F- statistics. 
 

F =     ~   Fk, n-k-1 (α);   where, k is the number of regression coefficient or parameter, n is the 

number of observation., α is the level of significance. 

 
3.2  Hypothesis 
 
H0: R2 = 0 (R2 Not significant) vs H1: R2 > 0 (R2 is significant)  
 
Using the given hypothesis, the raw data and the transformed data will be tested at 5% level of 
significance and the results presented on Table 2 below. 
 
Table 2:  TEST FOR THE SIGNIFICANCE OF R2 

TEST FOR THE SIGNIFICANCE OF R2 

DATA SET R2 Fcal Ftab DECISION 
Raw data 0.918 279.88 3.18 Significant  
Log 0.917 276.20 3.18 Significant  
Square root 0.925 308.33 3.18 Significant  
Square 0.866 161.57 3.18 Significant  
Inverse 0.864 160.00 3.18 Significant  
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4. DISCUSSION 
 
Table 1 shows the raw and transformed data which was fitted using SPSS software. The fits were examined 
using linear regression models, coefficient of determination (see appendix).  
Table 2 shows the R2 of the original data, log transform data, square-root transform data, square transform 
data data were 91.8%, 91.7%, 92.5%, 86.6%, and 86.4% respectively. These results showed a clear picture 
in terms of the competitiveness in modeling (fitting) data. The linear regression model was obtained for 
the raw data set and the four different transforms. The respective R2 of data set were then examined to 
determine the total variation of the mortality rate explained by the changes in period (year). Obviously, 
the square-root transform had the highest of the R2. Also considered was the test of normality for all the 
data set (see appendix). It was seen clearly that the square-root transform did not differ significantly from 
normality. It gave a more normal distribution from a skewness value very close to zero as required for a 
normal distribution than the rest of the data set. Furthermore, the correlation coefficient rxy was also 
considered for the raw data, log transform data, square-root transform data, square transform data, and 
the inverse transform data, the result were as follows; 95.8%, 95.8%, 96.2%, 93%, 92.9% respectively. 
Consequently, upon the results obtained from the foregoing, the square-root transformation is the best 
method of data transformation for the data used in this research.          
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APPENDIX 1 
 SPSS OUTPUT OF REGRESSION OF Y AGAINST X (ORIGINAL DATA SET) 
 
 

Model Summaryb 
Model R R 

Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

Change Statistics 
R Square 
Change 

F 
Change 

df1 df2 Sig. F 
Change 

1 .958a .918 .916 9489.259 .918 567.238 1 51 .000 
a. Predictors: (Constant), X 
b. Dependent Variable: Y 

 
ANOVAa 

Model Sum of Squares Df Mean Square F Sig. 

1 
Regression 51077524567.812 1 51077524567.812 567.238 .000b 
Residual 4592347507.660 51 90046029.562   
Total 55669872075.472 52    

a. Dependent Variable: Y                            b. Predictors: (Constant), X 
 
Coefficientsa 
Model Unstandardized Coefficients Standardized 

Coefficients 
t Sig. 

B Std. Error Beta 

1 
(Constant) 178646.807 2644.232  67.561 .000 

X -2029.407 85.209 -.958 -
23.817 

.000 

a. Dependent Variable: Y 
 

 

Charts of the Original Data Set 
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APPENDIX 2 
 
SPSS OUTPUT OF REGRESSION OF LOG Y AGAINST X (LOG TRANSFORMATION) 
 

Model Summaryb 
Model R R 

Square 
Adjusted 
R Square 

Std. Error of 
the Estimate 

Change Statistics 
R Square Change F 

Change 
df1 df2 Sig. F 

Change 
1 .958a .917 .916 .03444 .917 566.838 1 51 .000 
a. Predictors: (Constant), X 
b. Dependent Variable: LOGY 

ANOVAa 
Model Sum of 

Squares 
Df Mean Square F Sig. 

1 
Regression .672 1 .672 566.838 .000b 
Residual .060 51 .001   
Total .733 52    

a. Dependent Variable: LOGY 
b. Predictors: (Constant), X 
 
Coefficientsa 
Model Unstandardized 

Coefficients 
Standardized 
Coefficients 

T Sig. 

B Std. Error Beta 

1 
(Constant) 5.276 .010  549.841 .000 
X -.007 .000 -.958 -23.808 .000 

a. Dependent Variable: LOGY 
 
 
 

 
 
 
 
 
 
 
 
 
 

Charts of the Log transformation 
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APPENDIX 3 
SPSS OUTPUT OF REGRESSION OF SQUARE ROOT OF Y AGAINST X (SQUARE 

ROOT TRANSFORMATION) 
 

Model Summaryb 
Model R R 

Square 
Adjusted 
R Square 

Std. Error 
of the 

Estimate 

Change Statistics 
R Square 
Change 

F 
Change 

df1 df2 Sig. F 
Change 

1 .962a .925 .923 12.95551 .925 626.435 1 51 .000 
a. Predictors: (Constant), X 
b. Dependent Variable: SQRTY 

ANOVAa 
Model Sum of 

Squares 
Df Mean 

Square 
F Sig. 

1 
Regression 105144.193 1 105144.193 626.435 .000b 
Residual 8560.108 51 167.845   
Total 113704.301 52    

a. Dependent Variable: SQRT 
b. Predictors: (Constant), X 

 
Coefficientsa 

Model Unstandardized 
Coefficients 

Standardized 
Coefficients 

T Sig. 

B Std. 
Error 

Beta 

1 
(Constant) 427.482 3.610  118.412 .000 
X -2.912 .116 -.962 -25.029 .000 

a. Dependent Variable: SQRTY 
 

Chart of the Square root transformation 
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APPENDIX 4 
SPSS OUTPUT OF REGRESSION OF SQUARE OF Y AGAINST X (SQUARE 

TRANSFORMATION) 
 
 

Model Summaryb 
Mo
del 

R R 
Square 

Adjusted R 
Square 

Std. Error 
of the 

Estimate 

Change Statistics 
R Square Change F Change df

1 
df
2 

Sig. 
F 

Cha
nge 

1 
.930a .866 .863 315495697

7.925 
.866 328.955 1 5

1 
.000 

a. Predictors: (Constant), X 
b. Dependent Variable: SQR 

 
ANOVAa 

Model Sum of Squares Df Mean Square F Sig. 

1 

Regressio
n 

327434134981575100
0000.000 

1 327434134981575100
0000.000 

328.955 .000b 

Residual 
507641430160326300

000.000 
51 995375353255541800

0.000 
  

Total 
378198277997607730

0000.000 
52    

a. Dependent Variable: SQRY 
b. Predictors: (Constant), X 

                                                           Coefficientsa 
Model Unstandardized Coefficients Standardized 

Coefficients 
t Sig. 

B Std. Error Beta 

1 

(Const
ant) 

30263201661.8
29 

879145427.183  34.4
23 

.000 

X 
-513826043.380 28330065.455 -.930 -

18.1
37 

.000 

a. Dependent Variable: SQRY 
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APPENDIX 5: SPSS OUTPUT OF REGRESSION OF INVERSE OF Y AGAINST X. 
(INVERSE TRANSFORMATION) 

                                        
MODEL SUMMARY 

Model R R 
Square 

Adjusted R 
Square 

Std. Error of 
the Estimate 

Change Statistics 
R Square 
Change 

F 
Change 

df1 df2 Sig. F 
Change 

1 .929a .864 .861 .0000009294 .864 323.302 1 51 .000 
a. Predictors: (Constant), X 
b. Dependent Variable: INVY 
 

ANOVA 
Model Sum of Squares Df Mean Square F Sig. 

1 
Regression .000 1 .000 323.302 .000b 
Residual .000 51 .000   
Total .000 52    

a. Dependent Variable: INVY 
b. Predictors: (Constant), X 
 

  
 
 
  

Chart of the Inverse transformation 


