
Proceedings of the Accra BMIC Conference, 2021

11

Academic City University College – Accra Ghana
Society for Multidisciplinary & Advanced Research Techniques (SMART) Africa
Tony Blair Institute for Global Change
FAIR Forward – Artificial Intelligence for All - Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Accra Bespoke Multidisciplinary Innovations Conference (BMIC)

& The Africa AI Stakeholders’ Summit 14th December, 2021

A Gitbash-Generative Model for an Enhanced Query Processing
In a Distributed Database System

Enyindah, Promise, Oghenekaro, Linda Uchenna & Marcus, Chigoziri Bobby.
Department of Computer Science
University of Port Harcourt
Port Harcourt, Nigeria.

Emails
promise.enyindah@uniport.edu.ng
linda.oghenekaro@uniport.edu.ng
chigoziri.marcus@uniport.edu.ng

Proceedings Citation Format

Enyindah, P., Oghenekaro, L.U. & Marcus, C. B. (2021): A Gitbash-Generative Model For An
Enhanced Query Processing In A Distributed Database System. Proceedings of the Accra
Bespoke Multidisciplinary Innovations Conference. University of Ghana/Academic City
University College, Accra, Ghana. December, 2021. Pp 11-24
www.isteams.net/ghanabespoke2021. DOI - https://doi.org/ 10.22624/AIMS/ABMIC2021P2

Proceedings of the Accra BMIC Conference, 2021

12

A Gitbash-Generative Model for an Enhanced Query Processing
In a Distributed Database System

Enyindah, Promise, Oghenekaro, Linda Uchenna & Marcus, Chigoziri Bobby.

ABSTRACT

This research study is directly focused on an enhanced query processing system using GitBash-
Deep Generative Model, it is use to improve the performance of big data. Due to Poor query
execution plan and absence of an improved aggregate query method which impose threats to
qualities of good query processing in distributed databases which also cause memory pressure
in a database, inflated central processing unit (CPU) and an overall reduction in concurrency.
Also the volume of data use in any organization is progressively increasing in it seize, thereby
resulting or demand a large storage location or space system. The availability of intended
software that will confront the problem of storage contents and execution plan for query
processing is a vital challenge facing big data in a processing system, which can prompt to
information loss and missing record of vital document in an enterprises. The study will boost
solution and addresses the problem of latencies, inability to transform and store queries, and
poor query processing plans for future improvement of distributed databases, using an
unsupervised learning approach such as deep generative model. The adopted methodology is
dynamic system development method (DSDM). php programming language and mongoDB
database is adopted for implementation. The datasets used for the proposed system was
generated from e-library server/data.json (query) and is inserted into MongoDB database json
format. The datasets are all trained and recognized by the Deep Generative algorithm through
the Git Bash server. The proposed system result shows highly increase in the efficiency of
management of big data and improved query processing.

General Term
Query Processing System

Keywords
Big Data, Deep Generative Model, Query Processing System, Information Management, Gitbash.

1. INTRODUCTION

Query processing is an efficient activity that aids Database end-users to retrieve specific
information from the database. Secondly, Query processing in a distributed system requires the
transmission of data between computers in a network. The arrangement of data transmissions
and local data processing is known as a distribution strategy for a query. In most parts of Nigeria,
data is conventionally obtained by manual entries though some technical data is obtained using
specialized metering but this form of entry is rarely automated. The study focused on the
application of an improved Deep Generative Model for improving query processing in
information management systems. A good query plan is needed for an improved performance
of big data.

Proceedings of the Accra BMIC Conference, 2021

13

The conversion of useful data into information is a task mostly done by trained experts.
Information is only useful if it can be converted into diverse beneficial forms and in a timely
manner. Speech synthesis from text, audio-visual systemic converters, and sensor-aware.
acquisitioned systems can result in very robust information systems. Real-time data in industrial
environments is typically streaming and unstructured. The data is typically obtained sequentially
over time. To obtain the relevant information is a key part of any modern information
management system as time critical industrial systems need to be well informed to minimize
losses or cost of operations, improve the working conditions and also create the enterprise.
Information can be re-generated as new and passed via industrial control systems over long
distances in-order to operate them more efficiently. Because information can be converted into
different forms, it is well suited to generative models. Generative models can help build more
efficient systems that are robust to making decisions without the usual cost implications in
memory or any hand-engineered approach.

[1] presented an approach to expand real-time database query solutions further by using
dynamic probabilistic models. Whether this approach is sufficient in itself remains to be tried
and tested effectively. The ultimate aim of any information system is to obtain relevant
messages or codes from noisy or contaminated data distributions. The origins of information
theory could be traced to the works of Shannon [2] and has deep probabilistic roots. “Query” is
a unique Database terminology that is used in Database Management Systems (DBMS). It is
also a Database object. Simple algorithms are presented that derive distribution strategies
which have minimal response time and minimal total time, for a special class of queries.

These optimal algorithms are used as a basis to develop a general query processing algorithm.
Distributed query examples are presented and the complexity of the general algorithm is
analyzed. The integration of a query processing subsystem into a distributed database
management system is also discussed in the study. Deep-Generative models is inspired by two
core machine learning disciplines – Genetic Algorithms and Generative Models. While Genetic
Algorithms is a biological motivated model based on human genetics and evolution, generative
models are basically statistically driven models used to probabilistically define a data generating
process which may be stochastic or not [3].

The remainder of this paper discusses; 2. Brief overview of related works. 3. The methodologies.
4. GitBash-Deep Generative Model 5. Results and Discussion. 6. Conclusion. 7. Further work

2. RELATED WORKS

A Deep Generative Model is a powerful way of learning any kind of data distribution using
unsupervised learning and it has achieved tremendous success in just few years. All types of
generative models aim at learning the true data distribution of the training set so as to generate
new data points with some variations. But it is not always possible to learn the exact distribution
of data either implicitly or explicitly and so there is need to model a distribution which is as similar
as possible to the true data distribution. However, neural networks can be used to model a
function which can approximate the model distribution to the true distribution. In statistical
classification, including machine learning, two main approaches are called the generative
approach and the discriminative approach. These compute classifiers by different approaches,
differing in the degree of statistical modeling. Terminology is inconsistent, but three major types
can be distinguished, following[4].

Proceedings of the Accra BMIC Conference, 2021

14

The distinction between these last two classes is not consistently made; Jebara (2004) refers
to these three classes as generative learning, conditional learning, and discriminative learning,
but Ng and Jordan[5] only distinguishes two classes, calling them generative classifiers (joint
distribution) and discriminative classifiers (conditional distribution or no distribution), not
distinguishing between the latter two classes. Applying data mining in information gathering of
big data in the educational sector will go a long way in positively effecting management and
decision-making[6] Another cardinal point of this study is the concept of big data. A good
information gathering algorithm will maximize computation power and algorithmic accuracy to
gather, analyze, link and compare large datasets, to also enable the drawing of large datasets
to identify patterns in order to make economic, social, technical and legal claims[7].

3. METHODOLOGIES

In order to achieve the set goal for this research work, the following methodologies were adopted

3.1 Experimental Research
Experimental research method is the straightforward experiment, involving the standard
practice of manipulating quantitative, independent variables to generate statistically analyzable
data. Generally, the system of scientific measurements is interval or ratio based. When we talk
about ‘scientific research methods’, this is what most people immediately think of, because it
passes all of the definitions of ‘true science’. The researcher is accepting or refuting the null
hypothesis. The results generated are analyzable and are used to test hypotheses, with statistics
giving a clear and unambiguous picture [8]. This enables researchers to compare the two groups
and determine the impact of the intervention following processes were considered: survey,
questionnaires, and interview

3.2 Agile Method
Agile software design methodology is a combination of iterative and incremental process
models with focus on process adaptability and customer satisfaction by rapid delivery of
working software product. Agile Methods break the product into small incremental builds.
These builds are provided in iterations [9]. Each iteration typically lasts from about one to three
weeks. Every iteration involves cross functional teams working simultaneously on various areas
like

I. Planning
II. Requirements Analysis

III. Design
IV. Coding
V. Unit Testing and
VI. Acceptance Testing.

At the end of the iteration, a working product is displayed to the customer and important
stakeholders.

4. GIT-BASH GENERATIVE MODEL QUERY PROCESSING SYSTEM’SARCHITECTURE

The proposed adopts an unsupervised learning approach that uses a Git-bash deep generative
model shown in figure 1. The proposed system uses mongo DB for data storage, which is
capable of distributing big data with the help of deep generative algorithm which assist in fast
processing and searching processed of an unstructured data.

Proceedings of the Accra BMIC Conference, 2021

15

The data to be search are keyed into the search term. The sorted data will immediately display
on the data structure. In this work, the system is presented with unlabeled, uncategorized data
and the system’s algorithms act on the data without prior training. The output is dependent upon
the coded algorithms. The specification or Requirement for performing simulations on the
proposed system is given in Table 1. The requirement specifications typically includes the
components necessary for implementing a given software process. It also includes some key
information about the type and nature of application domain (such as the use of generative
domains e.g. the use of deep generative algorithm domain). It must be emphasized that these
requirements may change depending on the Application domain.

The initial requirements specifications will hence include:

1. A formal definition of the primary components required for implementing the system
(e.g. the use of genetic algorithm).

2. A description of the data attribute structure of the functional objects/or attributes in the
software system (state some key data structures here) See below and use as
appropriate.

Table 1 show the requirement specification data used for training and testing of the proposed
system.

The proposed system uses Git-Bash Deep generative model for query processing system
(artificial system) to evolve a set of system parameters. The proposed Systems components and
dataflow diagram are as shown in figure 1 and 2; these includes:

Dataset
The dataset use is called data.json from the existing system e-library server/data.json (query).
It is the crisp set for query input. The dataset contains all the unstructured big data from the
cloud e-library server/data.json (query). The dataset was generated from existing system e-
library server/data.json (query) and is inserted into the mongodb and send to gitbash server
where command is been given and then sent to the gitbash- generative mode for conversion
from its original crisp set to query set that is now understand by the user. The proposed model
contained one thousand (1000) datasets extracted from more than one million dataset in the
existing system e-library server/data.json (query).

Information or Files
This component holds the unstructured data that are inputted into the mongodb. These data
are store in the mongodb interface before sending to the gitbash server. This component is also
another interface where information is sending to the model. It holds information or file from
different users for conversion from its original state to query set for proper understanding.

Mongo DB
This component receives all the dataset and the information of the dataset from their respective
source and stores them and sends them to the git bash server. The mongodb is a large storage
location use to store the information or files and the dataset from the existing system e-library
server/data.json. The mongodb encrypts and secure the dataset. The operation perform by the
mondodb is done in the MongoDB audit log’s which displays the dataset on an html application.
There are created tool in the MongoDB audit log’s which allows the user to conduct multilevel
search queries on the audit log data. The dataset goes into the MongoDB audit log’s for auditing.
The auditing system writes every audit event on the dataset to an in-memory buffer of audit
events. MongoDB writes this buffer to disk periodically.

Proceedings of the Accra BMIC Conference, 2021

16

The auditing system writes and display these datasets to the log file in a JSON format. The json
format of an audit dataset event is done by typing the attribute types (ex. string/int/timestamp),
(“System Event Audit Messages”). This command then sends to the discriminative algorithm to
apply rules and parses an array of these objects as its main data source. To execute complex
nested queries, the mongodb uses a complex Boolean expression in form of a decision tree. For
the nested query operation, the dataset has expressions and groups which denote a level of
nesting. The query operation is done in the following format.

{
conditions:[A],
groups:[
{
conditions:[B, C],
groupOperator: ‘AND’,
groups:[{
conditions:[D,E]
groupOperator:OR
}]
}
]
}

In the JSON dataset format expressed on a tree as shown in code above, the root of the tree
would be the first group operator with the condition A as the left leaf and an ‘OR’ node on the
right for nested group’s operator. This node is connected with the conditions inside of its group
which is B ∧ C and D ∧ E. Having the query expressed like this makes it easy to walk the tree
and convert the expression into Postfix format before processing the query. From the search
query in a tree format above, the full query is: A and (B and C or (D and E)) Postfix query is: ABC
AND DE AND OR AND.

The Git Bash servers
The gitbash server component is use to connects the big data from the Mongo DB to the
discriminative algorithm. The gitbash server contains the query mechanism that is use to
enables the dataset to accommodate the Microsoft window storage location which provide
emulation layers. The gitbash server component is use to control and manage the big dataset
in the window storage location and allows the users to issues different command and format to
the big data. The operation of the git bash server is done by first run or lunch the git bash. The
first lunching of the Git Bash, allows the Generative algorithm to have a link on the MongoDB
platform, this is done by typing in the code: cd with a space type documents/query, then press
enter and type npm with a space type run with a space type serve then press enter.

These commands will immediately link the Generative algorithm to have a link on the MongoDB
platform, which is the first command execution in the improved query processing. The second
operation on the git bash is by lunching it the second time, the second lunching of the git bash
server is to connect the datasets in the MongoDB to the discriminative algorithm to display on
the design interface. The second operation of the Git Bash server is done by simply right click
on its icon and type in the code: cd with a spaces type documents/query/server then press enter
and type node with a space type index.js then press enter. This code will immediately connect
the algorithm and the MongoDB.

Proceedings of the Accra BMIC Conference, 2021

17

When the two operation of the git bash are running simultaneously at the same time, it will
display data connection successful. This means that the connect to the program for execution
successful.

Gitbash-Generative Model
This component receives the data set from the cloud e-library server/data.json and send to the
generative adversarial network. The dataset then goes into the inference engine to assign the
right rule that will be used to convert the scrip dataset by the algorithm. The gitbash generative
model component contains some other interface which are inference engine, discriminative
algorithm that perform the conversion of the scrip set to the query set.

The Generative Adversarial Network
This is a component in the gitbash-generative model that contains the inference engine and the
discriminative algorithm. This component performs the main function of the conversion. It uses
the unsupervised learning method on the data set. The rules are store in the inference engine.

The inference Engine
The inference engine component contains several rules use for conversion from the original
scrip dataset to the require query set for querying the big data. The inference system retrieved
rules from the rule base which then produce the require output query. Each of the rule
determined the type of query needed to perform. Once the unstructured database is converted,
the corresponding input query sets are passed to the inference engine that process current
inputs using the rules retrieved from the rule base, then produces an outputs query set. This
component contains rules use to train the algorithm depending on the types of data set.

The inference engine was used to build the model. The inference engine specifies the features
of inputted datasets based on a given label in the application, which use the output probabilities
from the Generative Adversarial Network to make decisions on the most likely variables or
parameters that influence the data generating stage. It stores the value in a local variable, and
then using that variable in the control condition. Local variable was used to hold the length
of the logData. The rule use by the inference engine local variable control condition,
which is;

for (var x=0, arrLength=logData.length; x<arrLength;x++){
//logic
}

The Discriminative Algorithm
This component contains the algorithm use in the proposed model. When the data set in the
inference engine assign the right rule to be used for training the algorithm, the algorithm will
then act upon the dataset to produce the desire result. The discriminative algorithm evaluates
the dataset by apply step that guide the conversion. When the json format of an audit dataset
event, that is attribute types (ex. string/int/timestamp), (“System Event Audit Messages”) or
command is sends to the discriminative algorithm, it then applies rules and parses an array of
these objects as its main data source. The postfix array is then evaluated in a stack method to
filter down the audit log data. The algorithm looped through the query one time and scanned
through the log file for each condition to find matches.

Proceedings of the Accra BMIC Conference, 2021

18

Homogeneous Distributed Database
This component enables the converted query set to match with the corresponding answer of the
request (i.e. prestored datasets in the database). Furthermore, the homogeneous distributed
database system is a network of two or more databases (with same type of DBMS software)
which can be stored on one or more machines on a network (nodes). So, in this system data can
be accessed and modified simultaneously on several databases in the network.

Query Output Aggregation
This component derives group and subgroup query results by analysis of a set of individual data
entries.

Query Results Output
This component displays all the queries in the mongo database storage to the user. It shows all
the aggregate components of all the dataset at the same time.

Table 1: Sample Input/output Specifications for the Deep generative algorithm for Query

Processing System
Field name Data Type Field Size/Width Decimal Index

Natrum carbonicum Character 20 no id 1

Rheum officinals Character 15 no id 2
Benzocaine Character 20 no id3
Sodium Character 15 no id4
Menthol Character 15 no id5
White Alder Character 20 no id6
Flouride Character 20 no id7
Ethanol Character 20 no id8
Pollen Character 15 no id9

Proceedings of the Accra BMIC Conference, 2021

19

Figure 1: Architecture of the Proposed System

Figure 3 show the lunching of the Git Bash environment. This is the first command execution in
the improved query processing. The lunching allows the Git-Bash Deep Generative algorithm to
have a link on the MongoDB platform. In the lunching, type in the code: cd with a space type
documents/query, then press enter and type npm with a space type run with a space type serve
then press enter. These commands will immediately link the Deep Generative algorithm to have
a link on the MongoDB platform. The function of lunching is to connect the datasets in the
MongoDB to the Git-Bash Deep Generative algorithm to display on the design interface. To
perform function on the Git Bash server simply right click on its icon and type in the code: cd
with a spaces type documents/query/server then press enter and type node with a space type
index.js then press enter. This code will immediately connect the algorithm and the MongoDB.
After running the firs and the second Git Bash server click on start button and type in run and
click on run at the top left side, this will immediately pop up another interface, then click on any
item and press m, this will locate MongoDB install program, then right click and click on start.
This will start running the MongoDB.

Proceedings of the Accra BMIC Conference, 2021

20

Figure 2: Dataflow Diagram for the Proposed System

Figure 3: MongoDB not Run on Query

Proceedings of the Accra BMIC Conference, 2021

21

5. RESULT AND DISCUSSION

Table 2 and 3 show the performance ranking and evaluation of the git-bash generative model
result for the proposed system. The variables used during coding are deep n, git-bash, search
item, APL, journal, and mongodb. The values in the table were taken during runtime and are
measure in second, the highest values recorded in the table 2 is 11. The graph of time against
performance is plotted in figure 4 and figure 5 shows Data connection on Git Bash Server to
Gitbash Generative Model

The result from the graph shows high increase rate of the variables in the proposed system when
compared with the existing system. The parameters use in the graph includes processing speed,
scalability, graphical user interface, availability and usability, query storage, and transformation
ability. The graph is plotted efficiency against parameters. The highest value of the efficiency
rate is 100. On the vertical axis (efficiency rate %) 20 units represent 1cm. the result from the
graph shows the increase of each of the parameters in the proposed system which indicate an
increase in performance, these shows that the performance ranking of the proposed system is
of increase with better performance

Table 2: Performance Ranking of Query Results for the Proposed System

Deep G. Rank Git Bash
Rank

Search Item
Rank

API Rank Search
Journal Rank

MongoDB Rank

8 4 2 3 12 9
10 3 3 11 4 5
11 6 9 6 7 6
9 10 4 5 8 3
10 9 10 8 9 10
9 5 7 9 6 8
Second (s)
05.7

7.06 05.09 04.09 03.04 03.04

Table 3: Performance Evaluation of the Proposed System

S/N PARAMETERS Efficiency Rate (%)
1 Processing Speed (PS) 98
2 Scalability (S) 92
3 Graphical User Interface (GUI)

Quality
95

4 Availability and Usability (AU) 87
5 Query Storage and

Transformation Ability
100

Proceedings of the Accra BMIC Conference, 2021

22

Figure 4: Query Results Performance Ranking Chart for the Proposed System

Figure 3: Data connection on Git Bash Server to Gitbash Generative Model

Proceedings of the Accra BMIC Conference, 2021

23

After series of runs and test using proposed Git-Bash Generative model system, test result
results shown great improvement

i. Latency Reduction: This is because the proposed system uses a Git-bash deep
generative model which consist of a hybridized algorithm (i.e. generative and
discriminative) to arrive at a query conclusion that is reached on the basis of evidence
and reasoning.

ii. Best Query Result for Structured and Unstructured Datasets: Git-Bash Deep Generative
Models algorithms can be trained using different data formats, and still derive insights
that are relevant to the purpose of its training. For this implies that the proposed Git-
Bash deep generative models’ algorithm can uncover any existing relations between
pictures, social media chatter, industry analysis, weather forecast and more to predict
future stock prices of a given company.

iii. No need for manual labeling of datasets before query processing:
iv. The proposed system supports self-automated query processing which also boycott the

need for manual labeling of data. This is because; labeling process is simple but time-
consuming. For example, labeling photos “dog” or “muffin” is an easy task, but an
algorithm needs thousands of pictures to tell the difference. Other times, data labeling
may require the judgments of highly skilled industry experts, and that is why, for some
industries, getting high-quality training data can be very expensive.

v. An improved Graphical User Interface, Technique for Query storage and transformation
for users of Homogeneous Distributed Database: The proposed system has enabled
user-friendliness in the usage of homogeneous distributed database. In addition, users
of the proposed system can be able to document, store and transform query sets in the
distributed database

6. CONCLUSION

In this study, the researchers have presented an improved approach to query processing
through the application of a Git-Bash deep generative model and mongodb. The improved
approach depicts an unsupervised learning technique for query processing which is also a type
of machine learning algorithm used to draw inferences from datasets consisting of input data
without labeled responses. The most common unsupervised learning method is cluster analysis,
which is used for exploratory data analysis to find hidden patterns or grouping in data.
The findings of this study are recommended to database administrators and analysts in e-library
environments, software developers and researchers with keen interest in the study area. This is
because data management and request via queries are becoming complex day by day. In other
words, the need for an improved query processing using Git-Bash Generative Model is highly
indispensable.

7. FURTHER WORK

The limitations of the research should be improved in the study especially in a sophisticated
application software device that will recognize real-time unstructured query data for
homogeneous distributed databases. In addition, also improvement should integrate on other
complex NoSQL databases such as Apache Cassandra, Hadoop and Mapreduce to the proposed
system in future.

Proceedings of the Accra BMIC Conference, 2021

24

REFERENCES

[1] Shammana, J. (2011). A Study of Control Parameters Affecting Online Performance of
Genetic Algorithms for Function Optimization, In J. D. Schaffer, (ed.), Proceedings of the
Third International Conference on Genetic Algorithms, 51-60.

[2] Bengio, B. (2015), Couprie, M. & Valduriez, P. 2015. Overview of Parallel Architectures
for
Database. The Computer Journal, 36, 734-740.

[3] Bennett O. (2018), Hybrid Technique for Optimization of Query Processing in a
Distributed Database, International Journal of Computer Science and Mathematical
Theory (IJCSMT), 4(2), 19 – 27

[4] Jebara A. (2004) Classifiers computed without using a probability model are also
referred to loosely as discriminative. The distinction between these last two classes is
not consistently
made; International Journal of Scientific and Technology
Research (IJSTR), 6(15), 29-56

[5] Jordan N. (2004) generative classifiers (joint distribution) and discriminative classifiers
(conditional distribution or no distribution), International Journal of Scientific and
Technology Research (IJSTR), 6(15), 42-66

[6] Shafiq A. (2014), Data Mining Algorithms and their applications in Education Data
Mining,
International Journal of Advanced Research in Computer Science and Management
Studies (IJARCSMS) 2(7), 50 – 56

[7] Kelvin T. (2016), Big Data: Understanding Big Data, Engineering and Applied Science,
Aston University, England, Research Gate Publications,
https://www.researchgate.net/publication/291229189, 56 – 61

[8] Oppenheim, A. 1992. Questionnaire Design, Interviewing and Attitude Measurement,
London, Pinter. Pp 303

[9] Gaurav, K. and Pradeep, K. 2012. Impact of Agile Methodology on Software
Development Process: International Journal of Computer Technology and Electronics
Engineering (IJCTEE) Volume 2, Issue 4

