

67

Vol. 2 No. 2, Issue 1, May 2016

Solving for Computational Intelligence the Timetable-Problem

A.A. Ojugo, D. A. Oyemade, & D. Allenotor
Department of Math/Computer Science

Federal University of Petroleum Resources
Effurun, Warri, Nigeria.

ojugo.arnold@fupre.edu.ng, oyemade.david@fupre.edu.ng, allenotor.david@fupre.edu.ng

ABSTRACT

Timetable problem is a constraint satisfaction problem that aims to resolve timetable scheduling conflicts
via models or algorithmic heuristics. The algorithms search through the domain space for the best (goal)
state that satisfies all the problem constraints and/or criteria. It aims to guarantee that the reasoning
process is explicit enough with a simple structure that conveys enough data about the problem or task to
the search algorithm/model. Our study aims at the complete, feasible assignment that satisfies its
constraints to yield a valid academic schedule for the University of Benin, Nigeria using 3-variants of
simulated annealing: (a) with reheating, (b) with adaptive and (c) with exponential cooling strategies;
while adopting a rule-based processor to yield an initial solution for the models. Results obtained were
thus: SA with reheating took 6hours and 45minutes to find solution after 8iterations (at best). SA with
adaptive cooling (at best) took 8hours after 12iterations; while SA with exponential cooling arrived at
solution 2.112seconds after 401 iterations. The convergence time for SA is dependent on parameters
such as start population, temperature (initial and final) and random swaps as applied in the cooling
strategies. These models yielded a valid schedule for the University of Benin in Nigeria considering
student preference as medium constraints of high priority.

Keywords: stochastic, network, function, optimization, search space, solution, models

Aims Research Journal Reference Format:
A.A. Ojugo, D. A. Oyemade, & D. Allenotor (2016): Solving For Computational Intelligence the Timetable-Problem
Advances in Multidisciplinary Research Journal. Vol. 2. No. 2, Issue 1 Pp 67-84.

1. INTRODUCTION

The constraint satisfaction problem (CSP) consists of 3-components: (a) variables, (b) values for each
variables, and (c) set of constraints for the various variables. Thus, a CSP aims to find a solution that
yields a value for each variable so as to satisfy all constraints via search method [35, 43]. A state is an
assignment of values to some or all variables, and an assignment is complete if all variable have values.
An assignment is partial if some variables have no values; while, a consistent assignment does not
violate the constraints. CSP solution must be complete and have a consistent assignment [11, 35].

A constraint is a relation between a local set of variables that satisfies or restricts the values that variables
can simultaneously have. For example, the term different(A1,A2,A3) can imply constraints A1, A2 and A3
must take different values. Thus, its solution consists of: (a) each constraint is over local collection of
variables, finding a global assignment to all variables that satisfies all constraints are hard, (b) such task
is called NP-complete for which the solution must employ a search method that cleverly explores the
space for possible assignments of values to all variables, and (c) each of Y variables has E values and
EY possible assignments [1, 20].

Examples of CSP include N-Queen task, Sudoku etc. Various search methods are used to find solutions
to such tasks, and these include depth search, breadth search, greedy search, iterative deepening,
steepest descent, etc. Some CSPs require a solution that maximizes its objective function as applied in
scheduling, cryptography, image interpretation to mention a few [17].

68

Vol. 2 No. 2, Issue 1, May 2016

While the search for CSPs solution must be feasible (achievable) and optimal (near or closest to the best
in the space); some tasks have dynamic feats that make the use of primitive search techniques a bit
tedious and inexplicable to resolve. These are best resolved via statistical-optimization methods. These
optimization methods search for optimal solution(s) in a given task, chosen from set of possible search
space. It aims to relate the problem data as input with uncontrollable feats and/or parameters to be
modeled, so as to satisfy all possible constraints and yield an output through its mathematical
model/structure that is flexible, easily adapted and robust. These, in time can be easily tuned and is often
inspired by biological, stochastic and evolutionary models whose implementation can span across fields
such as medicine, electronics, etc. Examples include genetic algorithm, fuzzy logic, particle swarm,
gravitational search algorithm etc – and is today, termed soft-computing (SC) [18].

1.1. Classical Problem Domain: Timetabling
[9,26,35,39,41] notes that the timetable problem is a classical CSP, that aims to derive an approximate
solution as thus: given a set of lecture classes and their days, student number/enrollment, rooms and
their capacities, instructors and their ranks, class types and locations, distances between buildings,
priorities of each building for different departments, students and their preferences amongst others – it
constructs a feasibly, optimal lecture schedule for students, taken by lecturers that satisfies all hard
constraints, and minimizes all soft and medium constraints.

[9] Constraints are more generally grouped into: (a) modular constraints (lectures scheduled to clash, as
students chose a subset of options from a given set, (b) time constraint (certain lectures taught by an
external instructor are constrained to a particular day), (c) smoothness constraints (reduce maximum
number of lectures taken simultaneously for exhaustive smooth room usage), and (d) spread out
constraints (lectures belonging to the same course are timetabled on separate days).

TTP is a high-dimensioned, non-Euclidean, multi-search constraint optimization, whose dynamism is an
NP-assignment task of timeslots to an event set that is subject to constraints made up of Ni instructors, Nl
lectures, Nr rooms and Ns students. It aims to schedule Ni instructor-class pair within Nt timeslots to yield
a schedule – such that no instructor or student is in more than one lecture class at a time, and no room is
expected to accommodate more than its capacity and more than a lecture at a time [3,6,19,26,39,41].

Various studies and different heuristics have been employed for such scheduling. For medium-sized
tasks such as exam/course scheduling in the university – many methods work well; whereas, scheduling
in large universities has no particular method yield good results for real-world apps on larger scale, the
nearest of which is in [2,4,19,26,39,41]. Its constraints are divided into [20-21, 26] thus:
a. Hard constraints are specific to space and time. They cannot be physically violated. Thus, such event

constraints must be satisfied and cannot overlap in time. We can schedule only one class at a time
for any student, teacher or room thus: (a) classes taught by the same instructor, (b) classes held in
the same room, (c) lecture class or laboratory of the same class, (d) class cannot be assigned to a
particular room unless the room capacity is greater than/equal to number of student enrollment for
that class, and (e) laboratory classes require a certain type of room.

b. Medium constraints are student preference and they fall between hard and soft constraints – as they
are based on time and space conflict that also cannot be physically violated (e.g. a student cannot be
in more than one class at same time). However, it is not possible to, and we are not expected to
satisfy all the students always. Thus, they can be avoided by making adjustments – so that as we are
not expected to satisfy all student-class preferences, in some cases, students can adjust their
preferences to satisfy student-class preference where such classes clash or is oversubscribed. Some
students will also have carry-overs. These must be catered for. Medium constraints have, though not
a high a penalty as hard constraints, attached to them – such that in a final schedule, the penalty of
which must be minimized and preferably, reduced to zero where possible. Examples are: (a) avoid
time conflicts for lecture and classes with students in common, (b) eligibility criteria for the class must
be met, and (c) do not enroll athletes in classes that conflict with their sport practice time.

69

Vol. 2 No. 2, Issue 1, May 2016

c. Soft constraints are preferences of time conflicts as they have the lowest priority and penalty
associated to them. We aim to minimize such cost, but may not reduce them to zero. Examples are
(a) for each student, balance the 3-days (Mon, Wed and Fri) and 2-days (Tue and Thu) schedules, (b)
spread lectures over the week, (c) lecture classes may request contiguous time slots, (d) balance the
student enrollment in multi-section classes, (e) lunch/breaks may be specified, (f) instructor may
request periods in which their lectures and classes are not taught, (g) instructors have preference for
specific rooms or types of rooms, and (h) minimize distance between room where classes are taught
or assigned and the building housing the home department.

Hard constraints must be satisfied and their associated cost must reduce to zero. Medium and soft
constraints are student and teacher preferences that should be satisfied if possible or minimize the cost
associated with them. Preferences involving teachers will have higher priority over those of students. A
feasible, optimal schedule is one that satisfies all hard constraints, minimizes all medium and soft
constraints where they are not satisfied. This study was conducted and achieved via a semi-automated
prediction [1,26,39,41]. The cost function measures quality of the current schedule that involves the
weighted sum of penalties associated with the different constraint or violation types. The study thus, aims
to find the optimal solution using stochastic, evolutionary methods that minimizes the cost function [19-
20].

1.2. Stochastic Models and Fitness Function
Most stochastic models use hill climbing technique that yields the following demerits: (a) they are time
consuming, (b) their speed often shrink as they approach maxima and thus, get stuck at local minima, (c)
requires extra computational power to search its space/domain, and (d) are computationally intensive
procedure and thus, expensive in implementation.

A good fitness function determines if an optimal is found, as model learns data relationships and
compares predicted to observed values. Its performance measure contributes to fitness value. Study
implements a semi-automated prediction with substantial manual effort to iterate final solution. To
schedule a certain semester, template of the previous semester is used as part of the input [26].

2. THE RULE BASED SYSTEM

[26] A rule-based system is implemented for 3 reasons: (a) serves as benchmark to measure how well
other methods do in comparison, (b) its simplified version yields a sensible choice for moves in models
used, rather than choosing completely random swaps, which greatly improves proportion of moves
accepted, and (c) used as preprocessor to all other models and to yield a good start solution.

The model consists of heuristic and conventional recursion routines to assist in carrying out class/lecture
assignments, as suited for the problem domain at hand where the following holds [26,39,41]:
a. Distance matrix of values between each academic department and every other building under use for

scheduling.
b. The class data structure of each class or lecture scheduled anywhere in campus is adopted that is

capable of lining with each other
c. The room data structure of each room (regardless of type) involved in the scheduling process such

that like classes/lectures and room structures are linked together.
d. Data structure for time periods to keep track of which time slot is occupied or not.
e. Department data structure for department inclusion within other larger departments or colleges
f. Students structure indicating classes or lectures of various degrees of requirements and preferences

for each student.

70

Vol. 2 No. 2, Issue 1, May 2016

The model’s basics function is: given data files of lectures or classes, rooms and buildings, department-
to-building distances matrix, student data and the inclusion data – using all these structures above, the
system builds an internal database used in carrying out the scheduling process. This process involve a
number of essential sub-processes such as checking the distances between buildings, room type and
hours occupied, checking and comparing time slots for any specific conflicts, checking rooms for any
space conflicts, and keeping track of and updating the hour already scheduled [26,39,41].

It is an iterative approach and the basic procedure for each move is as thus. Lecture scheduling is done
by the department, so that each iteration or generation consists of a loop over all the departments. The
departments are chosen in order of size, with those having the most classes being scheduled first. The
model first scans all currently unscheduled lectures. It then attempts to assign them to the first
unoccupied rooms and timeslots that satisfy the rules governing constraints. Since the constraints for
capacity of rooms are very difficult to satisfy, larger lectures are scheduled first to avoid not having
lectures with larger number of students without appropriate room capacity to cater for them [19, 26,39,41].

In most cases, only rooms and timeslots satisfying all the rules will already by occupied by previously
scheduled lecture classes; And in such case, the will system attempt to move one of these lecture or
class into a room and timeslot, to allow the unscheduled class or lecture to be scheduled. Next, the
system searches through all scheduled lecture or class and selects those with higher cost by checking
the medium and soft constraints (such as how close a room size matches lecture class size, how many
students have time conflicts with lectures clashing, which sporting activity clashes with lecture time and
how many students are affected, whether the lecture is in a preferred time slot or building, and so on.
Selecting threshold values for defining what is considered a high cost for each case is subjective
procedure – though straightforward to choose a reasonable value. When a poorly scheduled lecture class
is identified, the model searches the space and maps and/or swaps it into a more comfortable position or
timeslot – so that the hard constraint are still satisfied, but the overall cost of the medium and soft
constraints are reduced [26,39,41].

Room swapping process continues, provided all the rules are satisfied and no cycling (swapping of the
same lecture) occurs. Once all the departments have been schedule, iteration cycle is complete. The
system continues in this process until complete iteration yields no further change in a schedule. There are
many rules dealing with the space and hour continuum, room type, and priority of room. Many are quite
complex, but the basic rules such as those implementing hard constraints are quite straightforward [13,
16, 19, 26-27, 39,41, 16,20,22,26,39,41]

Rules adopted for the states:
a. IF room (capacity) > class (space requested) AND {no time conflict in room} THEN assign the room to

the class.
b. IF student (capacity) > room (space requested) THEN assign NOT room to lecture class.
c. IF {(Lecturer/Instructor = (Professor > Reader > Senior Lecturer > Lecturer1 > Lecturer2 > Assistant

lecturer)} AND {no time conflict for room} THEN (allot space-requested to senior lecturer as
preference is to most senior).

d. IF (time = allotted lecture) AND Student (time = sport) THEN Student (adjust) OR Class Time (adjust).

Our rule-based model will yield a partial schedule as output (as it is unable to assign all the given lectures
to rooms and timeslots). Output is divided into: (a) lectures and its associated lecturer/students, assigned
to various rooms, (b) list of unassigned lecture classes from constraint conflicts [26,39,41].

71

Vol. 2 No. 2, Issue 1, May 2016

3. SIMULATED ANNEALING (SA)

[40] SA is inspired by the annealing technique that aims to strengthen glass or crystals by heating them
till it liquefies and is, allowed to slowly cool so that the molecules settles into states with lower energies.
With this, the model tracks and alters the state of an individual, constantly evaluating its energy via its
energy function. Its optimal point is found by running series of Markov chain under various
thermodynamic state [44]. The neighbouring state determined by randomly changing an individual’s
current state via a neighbourhood function. If a state with lower energy is found, individual moves to it;
else, if neighbourhood state has a higher energy, individual moves to that state only, if an acceptance
probability condition is met. If not met, individual remains at current state [25, 32-34,44]. [24-25,31,40,44]
The acceptance probability is difference in energies between current and neighbouring states, and
temperatures. Temperature is initially set high, so individual is more inclined towards higher energy state
– allowing individuals to explore a greater portion of the space and preventing it from being trapped in
local optima. As model progresses – temperature reduces with cooling and individuals converge towards
lowest energy states till an optimum point. [19-20]

Our rule-based SA algorithm is given by [12,25-26,41,44]:
1. Select initial solution via preprocessor rule-based system
2. Select the temperature change counter H = 0
3. Select a temperature cooling schedule,
4. Generate Initial schedule for individual state, energy and temperature S
5. Set initial best schedule S* = S.
6. Compute cost of S : C(S)
7. Compute initial temperature To
8. Set temperature T = To
9. Loop until temperature is at minimum
10. Loop until maximum number of iterations reached
11. While stop criterion is not satisfied or reached, Do:
12. Repeat Markov chain length (M) times
13. Select random neighbor S’ to current schedule, (S’ Ns)
14. Find neighbour state via neighbour function
15. If neighbourhood state has lower energy than current
16. Then change current state to neighbouring state
17. Else if the acceptance probability is fulfilled
18. Then move to the neighbouring state
19. Else retain the current state
20. Keep track of state with lowest energy
21. End inner loop: End outer loop

A major advantage of SA over other heuristic methods is in its ability to avoid becoming trapped in local
minima. It uses a random search, that not only accepts changes that decrease the objective function f (for
a minimization task), but also allows some changes that increases it [14,17-18]. The latter is accepted
with a probability defined as thus:

df is the increase in f, T is a control parameter that by analogy with the original application is known as
the system temperature irrespective of the objective function involved [27,30]. SA’s implementation is
quite straightforward and its structure must have the following elements provided for [27, 30, 37]:
a. a representation of possible solutions
b. a generator of random changes in solutions
c. a means of evaluating the problem functions
d. an annealing schedule - initial temperature and rules for lowering it as the search progresses.

72

Vol. 2 No. 2, Issue 1, May 2016

This model employs exploratory search via multiple individuals and flexibility in finding a better optimal
point, even when a local minimum are found and present [9,11,40]. The rule-based system initialized,
yields candidates with low fitness. If a better individual is not found, best individual is chosen after a
number of runs for a series of random walks until an optimal solution is found. SA is run on the chosen
“fittest” candidates or individual until a solution is found on the neighbourhood size and function [23-
24,40].

To randomly re-initialize the space for a series of Markov chain to be run, the temperature schedule is
applied. After which, the neighbourhood function is then applied to randomly change individual energy
states and compute best fitness with such individual tracked until a fitness of 0.6 is found. Model finds
individuals of low energy to enter SA cycle early enough to apply the temperature schedule as needed
[26,28]. Thus, a moderated Markov chain that accepts states with energies of lower or equal to current
state’s energy, is used. The runs continues till state of 0 energy is reached, to imply that solution is found
[31-34,40].

Mapping SA to the TTP task at hand, involves a construct as thus [19-20,26,39,41]:
1. A state is a timetable containing the set:

I: a set of instructors, L: set of lecture classes
S: set of students, R: set of rooms
T: set of timeslot and intervals

2. A cost or energy E(I, C, S, R, T) such that:
a. E(I) is cost of assigning more than maximum number of allowed class lectures.
b. E(L) is the cost of assigning certain lecture class within/at same timeslot in violation of the

exclusion constraint, for example.
c. E(S): cost of assigning a student to two or more lecture class that are in time conflict; plus cost of

scheduling one/more lectures that do not meet student’s major, lectures requested, or lectures
requirements; plus the cost of lectures evenly spread over a week.

d. E(R): cost of assigning rooms of wrong size and/or type to a certain lecture class.
e. E(I): cost of assigning more/less time than required plus cost of imbalanced lecture assignment

(certain periods will have more lectures assigned to them than others) etc.
3. A swap (move) is exchange of one or more of the following: lectures Li with lecture Lj in a set L with

respect to periods Ti and Tj, and/or with respect to classrooms Ri and Rj respectively – and is referred
to as lecture class swapping.

Along with these necessary constraints, SA as input data the following: the rule-based system
preprocessed output in form of non-scheduled and scheduled such as list of room types, list of lecture,
their associated instructors and room types, a department to building distance matrix, list of student
number and their lecture preferences, and a list of lectures that are not allowed to be scheduled
simultaneously. For effective SA, it is crucial to use a good method for choosing new trials and a good
cooling schedule that aids effective search [26,39,41].

3.1. SA with Exponential Cooling
[29,42] Simulated Annealing as a heuristic model has 3-feats, which are of fixed definitions namely: state
space, move class and cost function. Its temperature is the only variable during its computation (a feat for
all SA variants). Attempts to derive good schedule first, melts the system at a high temperature. Then,
repeatedly lowering temperature by the constant (0<α<1). Enough steps at each temperature is taken to
keep system close to equilibrium, until system approaches ground state. This results in an exponential
schedule that is further explained as:
a. Initial Temperature T0 is estimated by conducting an initial search in which all increases are accepted

and calculating the average objective increase observed f+. This results in an average increase of
acceptance probability P0 = 0.8 – implying, there is 80% chance that a change to increases its
objective function will be accepted. T0 clearly depends on scaling f, and is problem-specific defined by
[29, 37,42]:

73

Vol. 2 No. 2, Issue 1, May 2016

b. Final Temperature: In some implementations, is determined by scaling: (a) number of temperature

values used, and/or (b) total number of solutions to be generated. Alternatively, the model is halted
when makes no further progress. Lack of progress is defined in many ways and it generally implies
that no improvement or new best solution is being found in the chain at one temperature. Combined
with acceptance ratio falling below a given (small) value pf [32].

c. Length of Markov Chains (Lj): The choice of Lj depends on the task’s size, which is not same
selecting length of the j

th
 Markov chain. Thus, Lj is independent of k. Also, minimum number of

transitions Nmin should be accepted at each temperature. Thus, as Tj approaches 0, transitions are
accepted with decreasing probability so that the number of trials required to achieve Nmin acceptances
tends to 1. In practice, each Markov chain is terminated after: (a) Lj transitions, or (b) Nmin
acceptances, whichever comes first, is a suitable compromise [33].

d. Decrementing Temperature: Depends on cooling strategy in use, and we adopts the form:

is constant close to, but smaller than 1. The scheme [34] was first proposed with = 0.95. It differs
from the linear cooling scheme that allows T to be reduced at every L trials via:

Reductions achieved using exponential and linear schemes have been found to be comparable near
to each other, and the final value of f, generally improves with slower cooling rates at the expense of
greater computational effort. The algorithm performance depends more on cooling rate T/L than on
individual values of T and L. Obviously, care is taken to avoid negative temperatures when using
the linear scheme.

3.2. SA with Reheating as a Cost Function
As adopted [4,26,39,41] the ideas behind is due to [18,34] that stressed specific heating as a measure of
the variance of cost (energy) values of states at a given temperature. The higher the variance, longer time
it takes to reach equilibrium, so the longer time one spends at temperature or alternatively put, the slower
one should lower the temperature.

In such combinatorial optimization such as TTP and traveling salesman, phase transition should be
resolved. Related studies show that resolution of the overall structure of the solution occurs at high
temperatures; while the fine details of the solution is resolved at low temperatures. Applying reheating
depends on the phase transition, allowing the model to spend more time in low temperature phases.
Thus, reducing the total amount of time required to solve the task. To find temperature at which phase
transition occurs, we must compute specific heat. Phase transition occurs at T(when specific

heat is maximal, which triggers the change in state ordering – so that if best solution found has a high
cost (energy), then this super structure may require re-arrangement by raising temperature higher than
the phase transition temperature T(Thus, the higher the current best cost, the higher the

temperature required to escape local minima. We then compute the maximum specific heat via the steps
as adopted in [3,26,28,34,39,41] given by Eq. 9.

[17-18,26] SA yields a set of configuration C(T). If Ci is cost of configuration I, C(T) is average cost at
temperature T, and σ(T) is standard deviation of cost T. At each temperature T, the probability distribution
for configuration becomes:

74

Vol. 2 No. 2, Issue 1, May 2016

The average cost is computed as:

Thus, the average square cost is given by:

The variance of the cost:

And, the specific heat is given by:

Temperature T(at which max specific heat occurs, or at which model undergoes a phase

transition can be found as thus [26,39,41]:

K is the tunable parameter, Cb is current best cost. Reheating is done when temperature drops below
phase transition or max specific heat; and there has been no decrease in the cost of specified number of
iterations (point model gets stuck at local minima). Reheating increases temperature above transition
phase of Eq. 7 to yield enough configuration change that allows it explore other minima, when the
temperature is reduced again [26,39,41].

3.3. SA with Adaptive Cooling
[26,39,41] Computes new temperature from specific heat (standard deviation of costs obtained at the
current T) – so that it keeps the model close to equilibrium by cooling slower close to the phase transition,
where specific heat is large. Adaptive cooling is implemented in various ways but, we choose the ideas of
[26,39,41,45-46], which yields better cooling schedule. Tj is current temperature at j. With σ(Tj) in Eq. 5 –
new temp Tj+1 becomes:

a is the tunable parameter. From [14,26,39,45], the function σ(Tj) is smoothed out to avoid dependencies
of temperature decrement on large change in standard deviation. Eq. 12 smoothes σ as thus:

Our smoothing function sets w = 0.95, to follow the Boltzmann distribution that preserves the relation:

75

Vol. 2 No. 2, Issue 1, May 2016

4. METHODS AND MATERIALS
Study aims to schedule only two semesters with different types of room (like Auditoriums, studios,
pavilions, classrooms, conference rooms, laboratories, theatres and unspecified such as pavilion,
incomplete and make-shifts rooms).

4.1. Model Performance Evaluation
Model’s performance is evaluated via coefficients of efficiency (R) and determination (r

2
) with ideal values

of 1 [21, 23-24,38]:

4.2. Experimental Practice
[14,26,39,45-46] We note that SA’s performance in any application is highly dependent on the method
used to select the new trial configuration of the model – so that it can effectively sample all parameters in
the domain space, achieved via efficient moves. The simplest way for choosing a move is to swap the
rooms or timeslots of two randomly selected lectures. This is quite inefficient as random swapping of
lectures will increase the overall cost, especially if it had yielded a valid solution (i.e. low temperature).
This low acceptance implies that the simple method is very inefficient – since it requires a lot to compute
the change in cost.

[26,39,41] A strategy is needed to choose moves that are more likely accepted. If choice of room is made
and we randomly choose a new room from list of rooms, it will most likely be rejected (as such a choice
may be too small or too large for the class). One possibility is to create a subset of all the rooms that
fulfills the hard constraints on the rooms for the particular lecture such as size and room type. After which,
we can make random selection of a room for that lecture only, from the subset of feasible rooms with an
acceptance probability that is sure to be much higher. [26,39,41] Also, note that each class has space-
type-required tag (in dataset) that embodies other information to assign a lecture to a right room, that will
effectively separate and update the independent sets based on the room type. Laboratories are
scheduled separately from regular lectures. In our method, we carry out the scheduling of lectures first,
followed by laboratories – so that we have made sure that no lecture and its associated laboratory is
scheduled at same timeslot [26,39,41].

76

Vol. 2 No. 2, Issue 1, May 2016

In effect, the embedded expert system in SA will effectively improve the choice of moves as well as use a
more complex expert system as a preprocessor for the SA. When used to choose the moves, the main
function of a rule-based system is to ensure that all trial moves satisfy the hard constraints. Many of the
rules dealing with the medium and soft constraints are softened or eliminated – as reducing cost of the
constraints via the Metropolis update in the SA model [26,39,41].

Another modification is that the rule-based model used is completely deterministic (discrete); while the
version used in choosing the moves for SA is probabilistic (rather than random) from the multiple
possibilities that satisfies the rules equally well. The extra freedom in choosing a new schedule and extra
degree of randomness inherent in annealing update helps prevent model from getting trapped in local
minimum before it yields a valid schedule, which is a major problem of a completely discrete, deterministic
rule-based system [26]. The reason for making the subset of possible moves choices created for each
lecture probabilistic is that choosing from it will yield a continuous schedule [35]. There may be certain
kinds of moves that are more likely to be effective so that our move strategy is to select these moves with
a higher probability. Swapping a higher level lecture (i.e. graduate) with a lower level lecture (i.e. first or
second year) has a more general, higher acceptance – since there is little overlap between students
taking these lectures [26,41].

Also, we experimented with two forms of swap: (a) lectures offered by same department/college, and (b)
lectures between different departments and colleges – to help effectively prune neighbourhood or domain
space, yield a more efficient moves and in turn, overall improvement in result [19,26,39,41].

4.3. Rationale, Feats and Tradeoffs in Study
SA has become a model of choice in dealing with CSPs especially in finance with nested regression and
local searches applied in hybrid forms. Complexity and nonlinearity in multi-agent, multivariate systems
and the increased interest of data in dynamic modeling of some CSPs as rules begs for more evolved,
sophisticated model – since parameters in this study, are a mix of continuous and discrete sets. A strong
feat of SA is their flexibility in adapting to many ad hoc constraints, rules, algebraic models, amongst
others. The power of SA, coupled with new modeling data can be fitted much better than in previously
studies. The model appears well suited for the allocation problems with constraints involved [32].

[12] Its merits are: (a) SA deals with highly nonlinear, chaotic, noisy and dynamic constraints, (b) Its
flexibility and search for global optimality makes it a better choice over others, (c) it is a more robust and
general model, (d) its versatility allows it not to any restrictive model feat, (e) for stochastic and/or very
complex nonlinear models, it is easily tuned to enhance its performance in the shortest time. Conversely,
its demerits are: (a) SA is a metaheuristic and choices are required to turn it into an actual algorithm, (b)
tradeoff exists between quality of the solutions and compute complete time, (c) tailoring work is required
to account for different classes of constraints as well as to tune model parameters is quite delicate, (d)
precision in the numbers of parameter used in SA has a significant effect on its solutions’ quality.

5. RESULT PRESENTATION

Study aims to satisfy all hard constraints, minimize cost of medium and soft constraints via real dataset
from University of Benin (Nigeria), find acceptable parameters that yields appropriate move strategy for a
general TTP and study the effect of a rule-based system as a preprocessor to provide the SA with a good
starting point. Studies indicate that the number of steps for each temperature needs to be proportional to
neighbourhood size, to maintain high quality result (though in use with the TTP) as adapted in [26,39,41].

Study resolved all hard constraints, minimizes all soft and medium constraints to find optima, which
improved as the number of iterations in the Markov chain becomes proportional to the combination of the
number of lectures, rooms and timeslots. TTP is characterized by sparseness. After required number of
lectures Nl has been scheduled, sparseness is Nsp = (NxNt – Nl) sparseness space-timeslots.

77

Vol. 2 No. 2, Issue 1, May 2016

Thus, the sparseness ratio is defined as Nsp/NxNt – and the denser the task, the lower the sparseness
ratio, and the harder the task is to be resolved. Also, for denser tasks, there is an additional correlation
involving problem domain size. Student’s preferences make task more tedious. Though, viewed as
medium constraints and are not necessarily satisfied [26,39].

Table 1: Size of Dataset for each Session

Items First Semester Second Semester

Instructor 307 307

Students 7005 7005

Rooms 23 23

Lecture classes

Buildings 4 4

Colleges 2 2

Departments 11 11

Table 2. Lectures scheduled using the diffferent SA methods

SA Cooling
Strategies

First Semester Second Semester

High Ave. Low High Ave Low

Reheating 0.72 0.70 0.72 0.80 0.77 0.76

Adaptive 0.67 0.60 0.50 0.67 0.63 0.59

Exponential 0.56 0.49 0.45 0.56 0.54 0.53

ES 0.91 0.89 0.72 0.93 0.91 0.89

Table 3. Scheduled with Rule-Based model as preprocessor

SA Cooling
Strategies

First Semester Second Semester

High Ave. Low High Ave Low

Reheating 0.99 0.95 0.95 0.99 0.97 0.97

Adaptive 0.93 0.87 0.87 0.92 0.90 0.90

Exponential 0.87 0.79 0.73 0.88 0.75 0.72

Table 4. Model Performance with Rule-Based model

Cooling Strategy MSE MRE MAE COE COD

With Reheating 0.87 0.79 0.75 0.781 0.966
With Adaptive 0.76 0.81 0.62 0.753 0.921

With Exponential 0.76 0.77 0.76 0.688 0.812

For randomly initialized data (as against backdrop of template used here), SA performed poorly. But, use
of rule-based model as preprocessor yielded an optimal solution that resolved student preferences of
about 70% as a medium constraint of very high priority. This is reasonably good as other approaches do
not deal with student preferences. Studies are currently aimed at improving this result to cater for
student’s preferences as a hard constraint.

78

Vol. 2 No. 2, Issue 1, May 2016

With these objectives, a comparison of these cooling method is as thus and supported by [26,39]:
a. SA with reheating took 6hours and 45minutes to find the solution after 8 iterations (at best). It was run

25 times (to eradicate bias), and found optima each time. Time varied between 6hours and 14hours,
as this depends on how close the initial population is to solution and neighbourhood function, initial
and final temperature.

b. SA with Adaptive cooling (at best) 8hours after 12iterations. It found solution for all 25times, and time
range between 8hours and 14hours.

c. SA with exponential cooling arrived at solution 2.112seconds after 401 iterations. SA used a Markov
chain of 387 iterations to find a solution. On 25 runs, time is between 3seconds and 3minutes – and
its convergence time depends on initialization and random swaps from temperature schedule as
applied.

6. SUMMARY AND RECOMMENDATION

Models are used for prediction, serve as educational tools to compile existing knowledge about a task,
serve as language to communicate hypotheses and gain better insight and to investigate parameters or
input crucial to be estimated accurately. Their failure or sensitivity analysis helps us to better reflect
theories on natural systems functioning. A detailed model may not be operationally applicable in larger
scale, but allow for study and thus, helps to develop other reasonable, applicable model. Simple models
may not yield enough data, whereas complex models may not be fully understood. Its application as an
intellectual tool requires less accurate numeric agreement between predictions and observations, but
rather seeks the model’s feedback as more important. Model complexity must be balanced as only
models that are understandable and manageable, are fully explored.

SA is quite time consuming for some CSPs; But use of a rule-based system as a preprocessor with a
good initial solution drastically reduces time taken to yield a good solution and improved the quality of the
result. In theory, a good initial solution should not be necessary, and any state should give a good
solution. In practice, there is no ideal cooling schedule and means of choosing trial moves that efficiently
explores the space as there are no restrictions on how long forecast takes. Thus, very hard problems with
large parameter space, with difficult search efficiency for which very slow cooling will be time consuming,
thus requires an initial, good solution and large enough computing power. This result clearly supports our
rationale for academic course scheduling [26,39,41].

79

Vol. 2 No. 2, Issue 1, May 2016

REFERENCES

[1] Aarts, E.H., Korst, J and Van Laarhoven., (1997). “Simulated annealing” as in Aarts, E.H and
Lenstra, J.K., (eds.) Local Search in combinatorial optimization, John Wiley and Sons.

[2] Abdullah, S., Ahmadi, S., Burke, E.K and Dror, M., (2004). Investigating Ahuja-Orlin’s large
neighbourhood search for examination timetabling, NOTTCS-TR-2004-8 Computer Technical
Report, University of Nottingham.

[3] Abramson, D., (1991). “Constructing school timetables using simulated annealing: sequential and
parallel algorithms”, Management Science, 37(1), pp 98-113.

[4] Abramson, D., Dang, H and Krishnamoorthy, M., (1996). Simulated annealing cooling schedules for
timetabling problem, Asian Operation Research, 3(5), pp 11-24.

[5] Al-Tarawneh, H, Y and Masri, A., (2011). Using a Tabu search with multi neighbourhood structures
to solve a university course timetable: UKM case study, Faculty of Engineering (Univeriti
Kebangsaan Malaysia) conf. on Data Mining and Optimization, pp208-212.

[6] Anh, D.T, Tam, V.H and Hung, N.Q.V., (2006). Generating complete university course timetables by
using local search methods, In Proceedings of IEEE International Conference on Research,
Innovations and Vision for the Future, ISBN: 1-4244-0316-2, pp 67-74.

[7] Bacchus, F., (2010). “Constraint satisfaction problem”, Univ. of Toronto: Lecture notes on Computer
Science www.cs.toronto.edu/~ fbacchus/. Accessed Feb. 13, 2015.

[8] Bayram, H and Sahin, R., (2013). A new simulated annealing approach for traveling salesman
problem, Mathematical and Computational Applications, 18(3), 313

[9] Brailsford, S.C., Potts, C.N and Smith, B.M., (1998). Constraint satisfaction problem: algorithms and
applications, European J. Operation Research, 119, pp 557-581.

[10] Burke, E and Ross, P. (1996). “Practice and theory of automated timetabling”, Selected Papers and
Lecture notes in Computer Science, 1153, Springer, NY.

[11] Coddington, P., (2012). “Constraint satisfaction problems”, Lecture notes on Computer,
cs.adelaide.edu.au. Last accessed Feb 13, 2013.

[12] Darrall, H., Jacobson, S.H and Johnson, A.W., (2003). Theory and practice of simulated annealing,
Handbook of Metaheuristics, Springer, ISBN: 978-1-4020-7263-5, pp 287-319.

[13] De Warra, D., (1985). “Introduction to timetabling”, European Journal of Operation Research, 19, pp
151-162.

[14] Diekmann, R., Luling, R and Simon, J., (1993). “Problem independent distributed simulated
annealing and its applications” in Applied Simulated Annealing, Vidal, R.V., Lecture notes in
Economics and Mathematics, Springer.

[15] Dos Passos, W., (2013). Numerical methods, algorithms and tools in C#, Chapter 18: Optimization
methods, Taylor and Francis Inc., ISBN: 9780849374791.

[16] Gislen, L., Soderberg, B and Peterson, C., (1989). “Teachers and classes with neural networks”,
International J. of Neural Systems, 1, pp 167 – 178.

[17] Johnson, D., Aragon, C, McGeoch, L and Schevon, C., (1991). “Optimization by simulated annealing:
an experimental evaluation Part II (graph partitioning)”, Operation Research, 39(3), pp 865-892

[18] Kirkpatrick, S., (1983). “Optimization by simulated annealing”, Science, 220, pp 671-680.
[19] Miners, S., Saleh Elmohamed, M.A and Yau, H., (1995). “Optimizing timetabling solutions using

graph coloring, NPAC REU program, Syracuse University: NY, www.npac.syr.edu
[20] Ojugo, A.A., (2005). Comparative study of simulated annealing model to solving optimization

problem – case of virus propagation on dynamic networks", Unpublished MSc, Nnamdi Azikiwe
University Awka, Nigeria.

[21] Ojugo, A.A., Eboka, A.O and Yoro, R.E., (2007). A hybrid simulated annealing neural network model
to solving the Sudoku problem, In Proceedings of IRDI 4th Conf. on Science and Technology, 78 –
102, Uyo: Nigeria.

[22] Ojugo, A.A., Eboka, A.O., Okonta, E.O., Yoro, R.E and Aghware, F., (2012). “Genetic algorithm rule-
based intrusion detection system”, J. Emerging Trends in Computing and Information Systems, 3(8),
1182 - 1194.

80

Vol. 2 No. 2, Issue 1, May 2016

[23] Ojugo, A.A, Emudianughe, J.E, Yoro, R.E, Okonta, E.O and Eboka, A.O, (2013a) "Hybrid ANNGSA
for runoff modeling, Progress in Intelligence Computing Applications, 2(1), doi:
10.4156/pica.vol2.issue1.2, pp22 – 33.

[24] Ojugo, A.A., and Yoro, R.E., (2013b). "Computational intelligence in stochastic solution for Queen
problem", Progress in Intelligence Computing and Applications, 2(1), doi: 10.4156/pica.vol2.issue1.4,
pp 46 – 56.

[25] Perez, M and Marwala, T., (2011). Stochastic optimization approaches for solving Sudoku,
Proceeding of IEEE Congress on Evolutionary Computing, pp 256 – 279.

[26] Saleh Elmohamed, M.A, Fox. G and Coddington, P., (1998). “A comparison of annealing techniques
for academic course scheduling”, Notes on Intelligence Computing, DHCP-045, pp 1-20.
www.dhpc.adelaide.edu.au.

[27] Schaerf, A., (2003) “Survey of timetable problem”, Dept. of Software Technology, Report CS-R9567,
CWI, Amsterdam: Netherlands.

[28] Sontag, E.D., (1998). “Learning for continuous-time recurrent neural networks”, Systems and Control
Letters, 34, pp. 151-158.

[29] Sorkin, G., (1991). “Theory and practices of SA on special landscape”, PhD thesis, Dept of Electrical
Engineering Computer Science, University of California, Berkeley

[30] Tarkesh, H., Atighehchian, A and Nookabadi, A.S., (2009). Facility layout design using virtual multi-
agent system, Journal of Intelligent Manufacturing, 20(4), Springer, pp 347 – 357.

[31] Thomson, J and Dowsland, K., (1995). “General cooling schedules for simulated annealing based
timetable problems, Proceeding of Practice and theory of automated timetabling, Edinburg: Napier
University, pp421–444

[32] Van Laarhoven, P.J and Aarts, E.H., (1987). “Simulated annealing: theory and applications”, D. Reidel,
Dordrecht.

[33] Vidal, R.V. ed., (1993). “Applied simulated annealing”, Lecture notes in Economics and Mathematical
systems, 396, Springler-Verlag.

[34] White, S.R., (1984). “Concepts of scale in simulated annealing”, Proceeding of IEEE Int. conference on
Circuit Design, pp 646-651.

[35] Zhang, L and Lau, S.K, (2005). Constructing university timetable using constraint satisfaction
programming approach, IEEE Intelligent Agents, Web technology and Internet Commerce, 2, pp 55-60

[36] Bashir, H.A and Neville, R.S., (2013). Hybrid evolutionary computation for continuous optimization, arxiv:
1303.3469, http://arxiv.org>cs

[37] Busetti, F., (1995). Simulated annealing
overview,168.18.62.64/wisdom/simulated%20annealing%20overview.pdf .

[38] Guo, Z., Zhao, J., Zhang, W and Wang, J., (2011). A corrected hybrid approach for wind speed prediction
in hexi corridor of China, Energy, 36(3), pp 1668 – 1679.

[39] Kumral, M and Dowd, P.A., (2005). A simulated annealing approach to mine production scheduling, J. of
Operation Research Society, 56(8), 922-930, www.dhpc.adelaide.edu.au

[40] Lassig, J and Sudholt, D., (2011). Adaptive population model for offspring population and parallel
evolutionary algorithms, arxiv: 1102.0588, http://arxiv.org>cs

[41] Michalewicz, Z., (1998). A survey of constraint handling techniques in Evolutionary computation methods,
www.dhpc.adelaide.edu.au

[42] Nourani, Y and Andersen, B., (1998). A comparison of simulated annealing cooling strategies, Journal of
Physics A: Mathematical and General, 30, pp 8373 – 8385.

[43] Ozcan, E., (2005). Towards an XML-based standard for timetable problem: TTML, Multidisciplinary
Scheduling: Theory and Applications, 24, pp163

[44] Perez, M and Marwala, T., (2012). Microarray data feature selection using hybrid genetic algorithm
simulated annealing, IEEE conference on Electrical and Electronics Engineers, doi:
10.1109/EEEI.2010.6377146, pp 1 – 5.

[45] Nikolaev, A.G., Jacobson, S.H., Hall, S.N and Henderson, D., (2011). A framework for analyzing sub-
optimal performance of local search algorithms, Computational Optimization and Applications, 49(3),
pp407.

[46] Iovleff, S and Perrin, O., (2004). Estimating a non-stationary spatial structure using simulated annealing,
Computational and Graphical Statistics, 13(1), doi: 10.1198/1061860043100.

81

Vol. 2 No. 2, Issue 1, May 2016

SEMESTER LECTURE TIME TABLE, 2014/2015 ACADEMIC SESSION
100 LEVEL
DAY/TIME 8-8:50AM 9-9:50AM 10-

10:50AM
11-
11:50AM

12-12:50PM 1-
1:50PM

2-
2:50PM

3-
3:50PM

4-
4:50PM

MONDAY PHY 121 (LT1) MAT 122 (LT1) / EVS
121 (LR5)

BIO 121
(LT1)
PHY 123
(LR5)

 PHY 129 (PLB2)

TUESDAY MAT 121 (LT1) BIO 129 (ELB)
PHY123[LT1]

BIO
129(ELB)
MAT123[LT1]

CHM 121 (LT1)

GSE 121 (LT1)

WEDNESDAY BIO 121 (LT1)
PHY 122 (LR5)

CSC 121
(LT1)

MAT123[LT1]
SPORT

THURSDAY CHM121
(LT1)

PHY121[LT1] CHM 109 (CLB2) CSC 121 (LT1)

FRIDAY MAT 121
(LT1)

CHM 122
(LT1)

PHY 122
(LT1)

PHY 122
(LT1)

GLY121 (LR5) MAT
122
(LT1)

EVS 121 (LR5)

200 LEVEL
DAY/TIM
E

8-8:50AM 9-
9:50A
M

10-
10:50AM

11-
11:50AM

12-
12:50PM

1-1:50PM 2-
2:50PM

3-3:50PM 4-
4:50P
M

MON MAT 225 (LR1)
EEE 221[LT2]
CHM225[LR4]

PHY221(L
R2)

MAT 224
(LR1)
PHY 221
(LR2)
CSC223
(LT2)

MAT 224
(LR1)
CSC223(LT
2)
CHM 222
(LR3)

EVS 222
(LR1)
GLY 221
(LR2)
GET 221
[LT2]
CHM 222
(LR3)

EVS
222
(LR1)
MAT
226(LR
2)
GET
221[LT
2]

CSC 221 (LR1)
CVE 221[LT2]
CHM226[CLB2]

TUES MAT222 (LR1)
CHM221 (LR2)
PHY 223 (LR3)
GET 222[LT2]

EVS 221 (LR2) GLY 221
(LR3)
MEE 224 [LT2] PHY 222
(LR1)

MAT 221 (LR1) EVS 224
(LR2)
GLY 222 (LR3) MEE
222[LT2]

CHM
229
(CLB2)

CHM 229 (CLB2)
MEE 221[LT2]

WEDN MAT221(L
R1)
PHY
222(LR1)

MAT
222(LR
1)
PHY
223
(LR2)
GLY
224
(LR3)
GET
222
[LT2]

CHM 223 (LR1)
EVS 223 (LR3)
MAT 226 (LR1)

MAT 225
(LR1)
GLY 222
(LR2)
CHM224[L
R3]

GSE 221
(LR1)

GSE
221
(LR1)

SPORTS

THURSD
AY

EVS 225
(LR1)
GLY
223(LR3)

MAT
224(LR
1)
EVS
225
(LR3)

MAT 223 (LR1) GLY 224
(LR2)
MEE 223[LT2] EVS 229
(EVL)

AGP 221
(LR1)
EVS 229
(EVL)
CHM224[L
R3]

AGP 221
(LR1)
CHM224[L
R3]

AGP22
2 (LR3)
PHY22
9 (LB)
CSC22
2 (LR2)

AGP222(L
R3)
PHY229
(LB)
CSC222(L
R2)

PHY
229(L
B)

FRIDAY CSC 221
(LR2)

CSC
221(LR
2)
GLY22
3 (LR1)

GET229[L
H1]
GLY223(L
R1)

GET229[L
H1]

GET229[LH
1]

82

Vol. 2 No. 2, Issue 1, May 2016

300 LEVEL
DAY/TI
ME

8-
8:50AM

9-
9:50AM

10-
10:50A
M

11-
11:50A
M

12-
12:50PM

1-1:50PM 2-
2:50PM

3-
3:50PM

4-
4:50P
M

MONDA
Y

 EEE321[LT2]
CHE320[LR4]
MEE323[LR3]
PNG322[LH]

 CHE321[LH] /
MEE321[LR4]
PNG320[LR3] /
GLY322[LR2]

EEE322[LR3
]
PNG321[LH]

MAR321[
LR3]

GET322[LH]
MAR321[LR3]

TUESD
AY

CHE322[LR3] /
PNG321[LH]

EEE320
[LH]
CHE32
0[LR3]
MEE32
3[LR4]
GLY326
[LR2]
PNG32
2[LH]

EEE320
[LH]
MEE32
3[LR4]
CHE32
0[LR3]

AGP222/P
NG325
[LH]
GLY322[L
R3]
MEE327[L
T2]

EEE323[LR3
]
AGP222/PN
G325
[LH]
MEE327[LT2
]

EEE323[
LR3]
MAR321[
LH]

CHE323[LR4]
MAR321[LH]

WEDNE
SDAY

GET321
[LH]

EEE321
[LH]
CHE32
3[LR3]

GET323[LH] /
GLY326[LR3]

CHE322[L
R4]
MEE322[L
H]

EEE322[LR1
]
PNG320[LR
3]
MEE322[LH]

CHE321[
LR4]

SPORTS

THURS
DAY

GET 321[LH] EEE320
[LH]

CHE32
0[LH]
MEE32
4[LR4]

EEE325[L
R3]
CHE302[L
H]
MEE324[L
R4]
CHE325[L
T2]

EEE325[LR3
]
MEE326[LH]
CHE325[LT2
]

MEE326[
LH]

EEE324[LH]

FRIDAY MEE32
9[LR4]
EEE329
[LH]
MAR32
9[LB]

MEE32
9[LR4]
EEE329
[LH]
MAR32
9[LB]

MEE32
9[LR4]
EEE329
[LH]
MAR32
9[LB]

 CHE324[
LH]
PNG324[
LR4]

CHE324[
LH]
PNG324[
LR4]

CHE324[
LH]
PNG324[
LR4]

83

Vol. 2 No. 2, Issue 1, May 2016

400 LEVEL

DAY/TIM
E

8-
8:50AM

9-9:50AM 10-
10:50AM

11-
11:50AM

12-
12:50PM

1-1:50PM 2-2:50PM 3-
3:50
PM

4-
4:50PM

MONDA
Y

EVS 421 [EVL] MAT
421 [CSL]
CHM421[LR5] GLY
421 [GLL]
PHY 421 (PLB)

CHM 424
[LR5]
CSC 425
[CSL]
AGP 423
[GLL]

CSC 421 [CSL] EVS
422 [EVL]
CHM 422 [LR4] GLY
422 [GLL]
PHY 422 (PLB)
MAT425[LR5]

CSC 424
[CSL]
CHM 425
[LR5]
GLY 426
[GLL]
PHY 429
(LR5)

CSC 423
[CSL]
CHM 425
[LR5]
GLY 426
[GLL]
PHY 429
(LR5)

MAT
423
[LR4
]
GLY
423
[GLL
]

MAT423[
LR4]
CSC424[
CSL]

TUESDA
Y

CSC 421
[CSL]
CHM
422
[LR4]
EVS 423
[EVL]
GLY 425
[GLL]
MAT425[
LR5]

EVS 421
[EVL]
PHY 421
[LR4]
MAT 421
[CSL]
CHM421
[LR5]
GLY 425
[GLL]

CSC 422
[LR5]
PHY 423
[PHL]
GLY 422
[GLL]
EVS 427
[ELB]
MAT 424
[LR4]

MAT 424
[LR4]
EVS 423
[EVL]
PHY 423
[PHL]
GLY 428
[GLL]
EVS 427
[ELB]

EVS 423
[EVL]
GLY 428
[GLL]
PHY 421
(LR4)
CSC428[
CSL]

CSC 424
[CSL]
CHM426[
CLB2]
AGP 422
[GLL]
PHY 424
[PHL]

CSC 424
[CSL]

CHM426[
CLB2]
AGP 422
[GLL]
PHY 424
[PHL]

CSC 426 [LR5]
CHM 427 [CLB2]
GLY 423 [GLL]

WEDNE
SDAY

MAT 422
[LR4]
EVS 424
[EVL]
GLY 427
[GLL]

MAT 422
[LR4]
CHM423[
CLB2]
EVS 424
[EVL]

CHM 423
[CLB2]
MAT 421
[LR4]
PHY 423
(LB)

MAT 424
[LR4]
CHM 424
[LR5]
GLY 424
[GLL]

MAT 424
[LR4]
CHM
424
[LR5]
GLY 424
[GLL]

CSC 426
[LR4]
AGP 424
[GLL]
PHY 425
(PHL)

AGP 424
[GLL]
PHY 425
(PHL)
EVS424[E
VL]

CSC 427 [CSL]
CHM 429 [CLB2]
GLY 426 [GLL]

THURSD
AY

MAT 422
[LR5]
AGP 426
[GLL]

MAT 422
[LR5]
EVS 425
[EVL]
GLY427[
GLL]

EVS 425
[EVL]
AGP 426
[GLL]
PHY 428
(PHL)
CHM430[
CLB]

EVS 428
[LR5]
AGP 423
[GLL]
PHY 428
(PHL)
CHM430[
CLB]

CSC 425
[CSL]
EVS 428
[EVL]
AGP 423
[GLL]
PHY 426
(PHL

CSC 423
[CSL]
AGP 421
[GLL]
PHY 426
(PHL)
CSC 425
[LR4]

AGP 425
[GLL]

CSC 422 [LR5]
GLY 429 [GLL]

FRIDAY MAT 423
[LR4]
PHY 427
[PHL]
AGP 421
[GLL]

MAT 423
[LR4]
PHY 427
[PHL]
AGP 421
[GLL]

CSC 427
[CSL]
AGP
426[GLL]

CHM
428[CLB
2]
GLY 427
[GLL]
CSC428[
CSL]

CHM
428[CLB
2]
GLY 427
[GLL]
CSC428[
CSL]

 AGP 421 [GLL]

84

Vol. 2 No. 2, Issue 1, May 2016

500 LEVEL
DAY/TIM
E

8-
8:50AM

9-
9:50AM

10-
10:50A
M

11-
11:50A
M

12-
12:50PM

1-
1:50PM

2-
2:50PM

3-
3:50PM

4-
4:50PM

MONDA
Y

CHE520[LR1]
MEE521[LR6]
EEE524[LR3]
MAR534[LR4]
EEE546[LR6]
PNG520[LR2]

EEE525[
LR6]
MEE526
[LR5]

MEE537[LR4]
EEE523[LR3]
MAR535[LR1]
EEE533[LR5]
EEE544[LR6]
PNG521[LR2]

EEE550[
LT2]
MAR521
[LR1]
PNG521[
LR2]

EEE550[
LT2]
MAR521
[LR1]

CHE524[
LR1]
MEE527
[LR3]
MAR527
[LR2]
EEE543[
LR5]
EEE532[
LR4]
PNG523
[LR3]

MEE525
[LR4]

TUESDA
Y

GET521[
LT2]

GET521[
LT2]

CHE521[
LR2]
MAR522
[LR1]
EEE532[
LR6]
EEE543[
LR5]
PNG523
[LR3]

CHE521[
LR2]
MAR522
[LR1]
EEE532[
LR6]
EEE543[
LR5]
PNG523
[LR3]

MAR523
[LR1]
EEE535[
LR4]
PNG521
[LR2]

MAR523
[LR1]
EEE535[
LR4]

CHE525[
LR2]
MEE521[
LR6]
MAR533[
LR4]
PNG520[
LR2]

PNG525
[LR6]
MEE536
[FLB]

MEE536
[FLB]

WEDNE
SDAY

EEE521[
LR6]
MAR531
[LR1]
EEE531[
LR5]
EEE541[
LR4]
PNG521
[LR2]

EEE521[
LR6]
MAR531
[LR1]
EEE531[
LR5]
EEE541[
LR4]
PNG521
[LR2]

CHE525[
LR2]
MEE527[
LR3]
MAR526[
LR1]

CHE525[
LR2]
MEE527[
LR3]
MAR526[
LR1]

PNG526
[LR4]
MEE526
[LR2]

CHE520[
LR1]
EEE525[
LR3]
MEE526[
LR2]

CHE522[
LR1]
MAR532
[LR2]
EEE528[
LR4]
EEE526[
LR3]
PNG525[
LR6]
MEE524[
FLB]

MEE524
[LR1]
MAR532
[LR2]
EEE528[
LR4]
EEE526[
LR3]
PNG525
[LR6]
MEE536
[LH]

GET521[
LT2]

THURSD
AY

CHE524[
LR3]
MEE523
[LR1]
MAR526
[LR5]
PNG526
[LR4]

CHE524[
LR3]
MEE523
[LR1]
PNG526
[LR4]

MEE525
[LR4]

MAR531
[LR1]
MEE525
[LR4]

EEE521[
LR6]
MAR533
[LR4]
EEE531[
LR5]
EEE541[
LR4]

MEE537[
LR4]
MAR527
[LR2}

CHE502[
LR1]
MEE522[
LR6]
MAR527
[LR2}

MAR525
[LR1]
MEE524
[LR2]

MAR525
[LR1]

FRIDAY

