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ABSTRACT 

 

Abstract: In this research work, a computational numerical approach, Variational Iteration Method (VIM), to the solution of an 

epidemic model (Kolawole, 2015) is presented. The result shows that as the saturation term for the susceptible individual 

increases, the susceptible and recovered individual increase drastically and at a point the disease dies out. 

 

Keywords:  VIM, saturation terms, epidemic model, Lagrange multiplier. 

 

CISDI Journal Reference Format  
Kolawole, M.K. & Olayiwola, M.O. (2016): On the Numerical Simulation of the Effect of Saturation Terms on the Susceptible Individual in 

Susceptible-Exposed Infected-Recovered- Susceptible (SEIRS) Epidemic Model. Computing, Information Systems, Development Informatics & 

Allied Research Journal.  Vol 7 No 2. Pp 83-90. Available online at www.cisdijournal.net 

 
 

1. INTRODUCTION 
 

Mathematical models can be categorized, based on the described diseases, population and environment, as linear, non-linear, 

autonomous or non-autonomous model. Kunniya and Nakata (2012) studied the long-term behavior of non-autonomous SEIRS 

epidemic model where 021 == mm . They obtained new sufficient conditions for the permanence (uniform persistence) 

and extinction of infectious population of the model.  

 

In this paper , the work done by Kunniya and Nakata  was extended to include non-linear incidence rate to investigate the effect 

of saturation term 1m  for the susceptible individual variational iteration method proposed by He (1998 & 1999).   

 

Differential equations are widely used to describe real life problems including modeling of HIV (Vergu et al, 2005 & Xiaohua, 

2007). All the referenced authors (1-9) have used different numerical methods to solve different types of differential equations in 

attempt to search for better, accurate, efficient and elegant method for the solution.   

 

Variational Iteration Method has been shown to solve a large class of linear and nonlinear problems with approximation 

converging to exact solution rapidly.In this work, we present VIM for the  modeling of the effect of saturation terms on the 

susceptible individual in (SEIRS) Epidemic Model. 

 

The idea of variational calculus was proposed by Inokuti et al (1978) and later modified by He (1998 & 1999) into a variational 

iteration method. This method and its modification has been applied to different types of differential equations (Olayiwola, 

2014a, 2014b). 
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2. MATHEMATICAL MODEL OF SEIRS  EPIDEMIC 
 

In this section, the system of differential equations that described the model is presented as follows: 
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Where: 

S(t) = susceptible individual 

E(t) = exposed individual 

I(t) = infected individual 

R(t) = recovered individual 

N = birth rate 

=β Disease transmission coefficient 

=µ Mortality or death rate 

=ξ Recovery rate 

=γ Rate of losing immunity 

=1m Saturation term for susceptible individual 

=2m Saturation term for infected individual 

=
++ ImSm 211

1
Incidence rate inclusive the saturation terms 1m and 2m  

 

 

3. THE VARIATIONAL ITERATION METHOD 
 

The idea of Variational calculus can be traced to Inokuti et al (1978) and later, He (1998 & 1999) modified it and presented a 

Variational Iteration Method that has been proved elegant in the solution of different types of differential equations. 

According to the Variational Iteration Method, we consider the differential equation. 

( ) ( ) ( ).sguNuL =+
   

                                                                                                           (2)
                         

 

 

Where L is a linear operator, N is a non-linear operator, and ( )sg is an inhomogeneous term. A correction functional to (1) can 

be constructed as : 

( ) ( ) ( ) ( ) ( )[ ]∫ −++=+
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                                                                        (3) 

Where  is a general Lagrange multiplier which can be identified optimally by variational calculus and  is known as the 

restricted variation i.e.  
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4. VARIATIONAL ITERATION METHOD FOR THE SOLUTION OF THE EFFECT OF SATURATION TERMS ON  

    THE SEIRS EPIDEMIC MODEL 

 

In this section, the VIM will be used to study the effect of saturation terms in the susceptible individual in SEIRS epidemic model. 

 To investigate the effect of , we proceed as follows: 

 

Applying equation (3) in (1) we obtained the following system of correctional functional: 
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Where ,  are general Lagrange Multiplier,  denote restricted  

variation i.e.  

The stationary values that corresponds to the correctional functionals are: 
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Equation (5) gives  

 

 

With , we obtained the following iterative scheme: 
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Using the following initial and computational values; 
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The following results can be readily obtained by Maple 18 when 3.01 =m . 
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5. RESULTS AND DISCUSSION 

 

In Figure 1, the graph reveals that the susceptible individuals are not either increasing or decreasing since the saturation terms 

have no effect while in Figure 2 the result reveals the asymptotic stability of the disease free equilibrium since the exposed and 

infected approaches zero. Figures 3 and 4 show perfect asymptotic stability of the disease free equilibrium because the exposed 

and infected individuals die out rapidly as 1m  increases. 

 
The simulation result reveals the stable and unstable nature of disease free equilibrium i.e. at unstable nature. These results show 

the asymptotic stability nature of disease free equilibrium. Hence, the saturated term for susceptible individual plays a vital role 

in disease eradication. 
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Fig. 1. Graph of simulated result when  021 == mm
 

 

 

Fig. 2. Graph of simulated result when  3.01 =m
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Fig. 3. Graph of simulated result when  6.01 =m
 

 

 
Fig. 4. Graph of simulated result when  9.01 =m
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