

107

11th International Science, Technology, Arts, Education,

Management & the Social Sciences Conference

Lagos, Nigeria, June, 2018

Book of Proceedings Vol. 13 Series 2

Empirical Investigation of Cloud, Grid and Virtualization Using Compiler Empirical Investigation of Cloud, Grid and Virtualization Using Compiler Empirical Investigation of Cloud, Grid and Virtualization Using Compiler Empirical Investigation of Cloud, Grid and Virtualization Using Compiler

Optimization Level for ThreadsOptimization Level for ThreadsOptimization Level for ThreadsOptimization Level for Threads ProcessesProcessesProcessesProcesses

Solanke Ilesanmi O.Solanke Ilesanmi O.Solanke Ilesanmi O.Solanke Ilesanmi O. & & & & Akinade AbigailAkinade AbigailAkinade AbigailAkinade Abigail

Department of Computer Technology

Yaba College of Technology

Yaba, Lagos, Nigeria

EEEE--------mailmailmailmail: solankesanmy@gmail.com; akinadetoyin2811@gmail.com

 Phone: Phone: Phone: Phone: +2348066030134; +2348035188771

ABSTRACTABSTRACTABSTRACTABSTRACT

This research focused on implementation of OpenMP. It considers the parallelization of an application

code which simulates the thermal gradient of a material in two dimensions. A C language program code

called jacobi2d.cjacobi2d.cjacobi2d.cjacobi2d.c that solves a rectangular 2 dimensional heat conductivity problem using Jacobi iterative

method was used. The boundary conditions required to compute a temperature distribution for a

rectangular 2D problem are: Top 300C, Bottom 500C, Left 400C and Right 900C with a range of problem

sizes enter as a run-time parameters to alter the problem sizes and convergence criteria. Also, there were

computations and readings for iterations and runtime for four values of M and N which was selected for 01,

02 and 03 optimizations. In Table 1.1 Readings, four values were selected for each of the iterations. The

results shows the performance of the runtime as the processor increases from 01 -optimization, to 02 -

optimization and finally to 03-optimization. It can be deduce from the representation that the run time of

the values reduces as more resources are allocated to execution through the increase in optimization level.

Also, in Table 2.1 Readings, the runtime decreases as it moves from thread1, thread2, thread3 and thread4,

comparing the last values for thread1 which are M is 180,N is 200, and their runtime which is

42.797187001 . Also the last values for thread2 which are M is 180, N is 200, their runtime which is

21.772106003. When the two runtimes were compared, it was discovered that there was a decrease in the

runtime because the more the thread increases, the more system resources they share such as a processor

which may affect their runtime by increasing it.

Keywords: Keywords: Keywords: Keywords: CCCCloud, Grid, Virtualization, Threads, Processors, Compiler, Optimization.

1111.... BACBACBACBACKGROUND TO THE STUDYKGROUND TO THE STUDYKGROUND TO THE STUDYKGROUND TO THE STUDY

Cloud computing emerges as a new computing paradigm which aims to provide reliable, customized and

QoS guaranteed computing dynamic environments for end-users (Wang et al, 2008). A cloud computing is

an approach where large scale related capability computer resources and infrastructures are provided in

form of services across the Internet to numerous customers. A grid machine can be described as an

infrastructure that can be used for solving dynamic problems, such as multi-processes, resources allocation

and a centralized control mechanism, using a standard set of protocols and interfaces to deliver significant

quality services (Cafaro, M., & Aloisio, G. 2011).

108

11th International Science, Technology, Arts, Education,

Management & the Social Sciences Conference

Lagos, Nigeria, June, 2018

Book of Proceedings Vol. 13 Series 2

The enormous computing resources demand of a process can be solved by a parallel computing

implementation specifically developed to work in Grid environments of multiprocessor computing

resources. The different parallel computing approaches (intra-node, inter-node and inter-organisations) are

not sufficient to address the computing resources demand of such a big problem (Aparício et al, 2006).

1.1.1.1.2222. . . . Concept OConcept OConcept OConcept Ooooo Cloud, Grid Cloud, Grid Cloud, Grid Cloud, Grid aaaand Virtualizationnd Virtualizationnd Virtualizationnd Virtualization

This research enhances the context of Grids, Clouds, and Virtualization. Grids computing ensure the

delivery of computing power and resources on demand. However, despite the various contributions of

active research in the area of grid computing, no viable commercial grid computing provider has emerged.

In daily activities, some users or consumers of computational resources will always need to make provision

for their own supercomputers that can guarantee speed, timely delivery and multi-processing.

The concept of Cloud Computing is not a completely new approach, research has established that there is a

relative correlation between Grid Computing, cloud computing and other relevant technologies such as

utility computing, cluster computing, and distributed systems in general (Foster et al, 2008). The concept of

Virtualization is a technology that enables many different

Clouds to be integrated. Some researchers focused the definition of grid, cloud and virtualization around

on-demand access to computing, data, and services. A grid system comprises of hardware and software

infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end

computational capabilities (Foster, I., & Kesselman, C. 2003) . The concept of Cloud computing is an

information technology approach that is characterized by ubiquitous access to shared resources and services

that can be provided rapidly with minimal interference, via the Internet facilities.

In cloud computing, there is sharing of resources such as software and hardware in order to achieve a

coherence services and cost saving approach. In the field of computer science, a thread of execution

comprises of the smallest sequence of executable instructions that can be processed independently by a

scheduler, which forms part of the operating system. Different operating systems processes threads and

processes differently from on another, but mostly a thread is made up of the component of a process. Many

threads can executed within a single process, executing concurrently and sharing the same computer

resources such as memory, while some processes do not share memory resources or computer resources.

Most times, the threads of a process can share its executable code and the values of its variables at any given

time (Lamport, 1979).

The issue of Virtual Machine (VM) concept dates back to the early 60s, this approach was introduced by

IBM as a mean to provide concurrent, interactive access to their mainframe computers. A VM was an

example of the physical machine and gave users the illusion of accessing the physical machine directly.

Virtual Machine was developed and used to enable time-sharing and resource-sharing at the same time on

the expensive hardware resources. Virtualization has been helpful in reducing the cost of hardware

resources and to improve the overall productivity by accommodating as many users as possible to work on

it simultaneously (Cafaro, M., & Aloisio, G. 2011). However, as technology advances and become more

integrated, the hardware has become cheaper and affordable and at the same time multiprocessing

operating systems has been invented and integrated (Chiueh, S. N. T. C., & Brook, S. 2005).

109

11th International Science, Technology, Arts, Education,

Management & the Social Sciences Conference

Lagos, Nigeria, June, 2018

Book of Proceedings Vol. 13 Series 2

1.31.31.31.3 Statement Statement Statement Statement oooof Problemf Problemf Problemf Problem

The development of mobile and portable computing devices has created an enabling environment for

minimizing the power consumed by a computer program. In the early development, the limitations of the

computer memory have been a limiting factor which hampers the performance of optimizations. Because

of all these influence, optimizations do not often produce optimal result, and in fact an optimization

sometimes may become an impediment to performance of resources. As a result of these problems, there

is a need for compiler optimization and compares of runtime in threads processes in order to determine

the processor performance.

1.4 1.4 1.4 1.4 ObjectiveObjectiveObjectiveObjective

The objective of this research is the Implementation of an OpenMP which considers the parallelization of

an application code that simulates the thermal gradient of a material in two dimensions using C language

program code called jacobi2d.c and compares the results of the optimization and threads processes in

order to determine the performance of the runtime as the processor increases.

2. 2. 2. 2. METHODOLOGYMETHODOLOGYMETHODOLOGYMETHODOLOGY

The study adopted a combination of qualitative and quantitative research methods. It explores the concept

of cloud, grid and virtualization. Also utilizes parallelization of an application code which simulates the

thermal gradient of a material in two dimensions using a C language program code called jacobi2d.cjacobi2d.cjacobi2d.cjacobi2d.c that

solves a rectangular 2 dimensional heat conductivity problem using Jacobi iterative method to test the

runtime and determine the performance of the processor. This research analysis was conducted using

University of Greenwich UK CMS grid machine resources.

110

11th International Science, Technology, Arts, Education,

Management & the Social Sciences Conference

Lagos, Nigeria, June, 2018

Book of Proceedings Vol. 13 Series 2

3. 3. 3. 3. DATA PRESENTATION AND ANALYSISDATA PRESENTATION AND ANALYSISDATA PRESENTATION AND ANALYSISDATA PRESENTATION AND ANALYSIS

3.1 3.1 3.1 3.1 Compiler Optimization Compiler Optimization Compiler Optimization Compiler Optimization

A)A)A)A) Step Step Step Step 1 1 1 1

In the step one of this research, there is a modification to the jacobi2d.c code to reflect the following

boundary conditions, at top 30C, bottom 50C, left 40C, and at the right 90C. The tolerance was set to

0.0001, the result was set to not printing using 0, and 1 for printing of the boundary sizes. Four different

values were selected for M and N for different optimization, which comprises of 01-optimization, 02-

optimization and 03-optimization.

Reflection of boundary sizes.Reflection of boundary sizes.Reflection of boundary sizes.Reflection of boundary sizes.

Compiler optimization is a process to minimize the time taken to execute a program. In this step 1, the

jacobi2d.c code was modified to:

Fig 1: Reflection of boundary sizes.Fig 1: Reflection of boundary sizes.Fig 1: Reflection of boundary sizes.Fig 1: Reflection of boundary sizes.

Figure 2: Screen shot for Compiler, program name and runtime parameters.Figure 2: Screen shot for Compiler, program name and runtime parameters.Figure 2: Screen shot for Compiler, program name and runtime parameters.Figure 2: Screen shot for Compiler, program name and runtime parameters.

111

11th International Science, Technology, Arts, Education,

Management & the Social Sciences Conference

Lagos, Nigeria, June, 2018

Book of Proceedings Vol. 13 Series 2

3333.2.2.2.2 Optimization LevelOptimization LevelOptimization LevelOptimization Level

The following computations are the readings of iterations and runtime for the four values of M and N which

was selected for 01, 02 and 03 optimizations. Four values were selected for each of the iterations, and the

table below shows the four values and the result of the iteration and the runtime for each of the iterations

performed.

Table 1: Readings for 01,02,03 optimization Runtime for values M and NTable 1: Readings for 01,02,03 optimization Runtime for values M and NTable 1: Readings for 01,02,03 optimization Runtime for values M and NTable 1: Readings for 01,02,03 optimization Runtime for values M and N

The table above comprises of the readings for 01, 02, 03 optimizations for four selected values of M and N.

It was discovered from the readings and the results of the runtime that the runtime decreases as the

optimization level increases; this indicates that the processor allocates more resources and thereby

increasing the rate of execution of the runtime. In order to explain this in a more graphical form, a bar chart

was used to illustrate the runtime performance. This bar chart explains the performance of the runtime as

the processor increases from 01-optimization, to 02-optimization and finally to 03 -optimization. We could

deduce from the graphical representation that the run time of the values reduces as more resources are

allocated to execution through the increase in optimization level.

From the table above, the last runtime for each of the optimization values was selected, which comprises of

01 optimization, 02-optimization and 03-optimization.

For all the last values of the each optimization:

M is 400, N is 400M is 400, N is 400M is 400, N is 400M is 400, N is 400

Computing the runtime for the extracted last values in each optimization, we have:

112

11th International Science, Technology, Arts, Education,

Management & the Social Sciences Conference

Lagos, Nigeria, June, 2018

Book of Proceedings Vol. 13 Series 2

Table 2: Extracted last values of M, N in each optimizationTable 2: Extracted last values of M, N in each optimizationTable 2: Extracted last values of M, N in each optimizationTable 2: Extracted last values of M, N in each optimization

OptimizationsOptimizationsOptimizationsOptimizations RuntimeRuntimeRuntimeRuntime

01-optimization 197.952488

02-optimization 151.077582

03-optimization 130.857994

Figure 3: Runtime Result of 01,02,03 optimizations for value M,NFigure 3: Runtime Result of 01,02,03 optimizations for value M,NFigure 3: Runtime Result of 01,02,03 optimizations for value M,NFigure 3: Runtime Result of 01,02,03 optimizations for value M,N

In summary of the chart analysis above , it is recorded that for values M 400,N 400 with following runtime

(197.952488) for 01-optimization, runtime (151.077582) for 02-optimization and runtime(130.857994) for

03-optimization, it was discovered that when the processors are optimized, or when higher optimization are

used to run a set of values, the runtime tends to decrease with respect to the increase in optimization. The

result of the chart above, can therefore be concluded that the blue lines which signifies the rate of the

runtime decreases with the respect to increase in optimization.

3333.3 OpenMP PARALLEL VERSION OF Jacobi CODE.3 OpenMP PARALLEL VERSION OF Jacobi CODE.3 OpenMP PARALLEL VERSION OF Jacobi CODE.3 OpenMP PARALLEL VERSION OF Jacobi CODE

B) STEP 2B) STEP 2B) STEP 2B) STEP 2

In step 2, there is a modification to the application created in step1 to be able to get parallel of the code

with openmp using the code (#pragma omp parallel for default (shared) private(i,j)).(#pragma omp parallel for default (shared) private(i,j)).(#pragma omp parallel for default (shared) private(i,j)).(#pragma omp parallel for default (shared) private(i,j)). Timer was also

included using the timer code

(omp_get_wtime();) (omp_get_wtime();) (omp_get_wtime();) (omp_get_wtime();) so as to determine the parallel runtime of the code, it was also tested on four (4)

threads or processors to be able to measure the performance and record the parallel runtime.

113

11th International Science, Technology, Arts, Education,

Management & the Social Sciences Conference

Lagos, Nigeria, June, 2018

Book of Proceedings Vol. 13 Series 2

Figure 4: Openmp Parallel codFigure 4: Openmp Parallel codFigure 4: Openmp Parallel codFigure 4: Openmp Parallel cod

3333.4.4.4.4 Threads LevelThreads LevelThreads LevelThreads Level

Table 3: Readings for 1,2,3,4 Threads Parallel Runtime for values M and NTable 3: Readings for 1,2,3,4 Threads Parallel Runtime for values M and NTable 3: Readings for 1,2,3,4 Threads Parallel Runtime for values M and NTable 3: Readings for 1,2,3,4 Threads Parallel Runtime for values M and N

114

11th International Science, Technology, Arts, Education,

Management & the Social Sciences Conference

Lagos, Nigeria, June, 2018

Book of Proceedings Vol. 13 Series 2

4.4.4.4. DISCUSSION OF FINDINGSDISCUSSION OF FINDINGSDISCUSSION OF FINDINGSDISCUSSION OF FINDINGS

The table 2.1 above shows the various readings for value M and N for about four (4) threads, the readings

consists of the values, runtime, iterations and Difmax for each of the value used. The same set of values was

used for all the four threads in order to be able to allow comparism between the values, especially their

runtime. Based on the readings taken from the four

(4) threads, the following were discovered:

(4) The runtime decreases as it moves from thread1, thread2, thread3 and thread4, comparing the last

values for thread1 which are M is 180,N is 200, and their runtime which is 42.797187001 . Also the

last values for thread2 which are M is 180, N is 200, their runtime which is 21.772106003. When

the two runtimes were compared, it was discovered that there was a decrease in the runtime

because the more the thread increases, the more system resources they share such as a processor

which may affect their runtime by increasing it.

(5) The iterations are the same for all the values for thread1, thread2, thread3, thread4.

(6) The Difmax are also the same for thread1, thread2, thread3, thread4.

In addition to the results of the readings above in table 2.1, the graph below interprets the runtime for

each thread. For the graph, the last values of each thread were used for thread01, thread02, thread 03

and thread04. The last values of all the threads are:

M is 180, N is 200M is 180, N is 200M is 180, N is 200M is 180, N is 200

Table 4: Extracted last values of M and N in each thread.Table 4: Extracted last values of M and N in each thread.Table 4: Extracted last values of M and N in each thread.Table 4: Extracted last values of M and N in each thread.

01-Thread 42.797187001

02-Thread 21.772106003

03-Thread 16.931387000

04-Thread 14.126476999

Figure 5: Step 2 Runtime resultsFigure 5: Step 2 Runtime resultsFigure 5: Step 2 Runtime resultsFigure 5: Step 2 Runtime results

This graph shows additional information on the decrease in runtime as the number of threads increases.

115

11th International Science, Technology, Arts, Education,

Management & the Social Sciences Conference

Lagos, Nigeria, June, 2018

Book of Proceedings Vol. 13 Series 2

5555. . . . CONCLUDING REMARKSCONCLUDING REMARKSCONCLUDING REMARKSCONCLUDING REMARKS

This research work demonstrates using OpenMP to parallelize a practical application. It shows how parallel

performance tuning using OpenMP as well as compiler optimizations can be used to achieve improved

performance. The parallelization of an application code which simulates the thermal gradient of a material

in two dimensions was used. The research work explains the performance of the runtime as the processor

increases from 01-optimization, to 02-optimization and finally to 03-optimization. We could deduce from

the result representation that the run time of the values reduces as more resources are allocated to

execution through the increase in optimization level. Also, it was discovered that there was a decrease in the

runtime because the more the thread increases, the more system resources they share such as a processor

which may affect their runtime by increasing the run time.

6.6.6.6. CONTRIBUTIONS TO KNOWLEDGECONTRIBUTIONS TO KNOWLEDGECONTRIBUTIONS TO KNOWLEDGECONTRIBUTIONS TO KNOWLEDGE

Based on the study and research work conducted, and in order to demonstrate how parallel performance

and compiler optimization can be used to achieve improve processor performance, the following

recommendations are suggested: Better performance can be achieved when the grid machine resources is

not been freeze or overload by multiple users who are running parallel code at the same time. It is also

important to note that for a swarm or large user grid platform, provisions of robust grid machine resources

is necessary in order to avoid freeze or overload.

116

11th International Science, Technology, Arts, Education,

Management & the Social Sciences Conference

Lagos, Nigeria, June, 2018

Book of Proceedings Vol. 13 Series 2

RRRREFERENCESEFERENCESEFERENCESEFERENCES

1. Dagum, L., & Menon, R. (1998). OpenMP: an industry standard API for shared-memory

programming. Computational Science & Engineering, IEEE, 5(1), 46-55.

2. Aparício, G., Blanquer, I., & Hernández, V. (2006, June). A parallel implementation of the k

nearest neighbours classifier in three levels: Threads, mpi processes and the grid. In International

Conference on High Performance Computing for Computational Science (pp. 225-235). Springer,

Berlin, Heidelberg.

3. Foster, I., & Kesselman, C. (Eds.). (2003). The Grid 2: Blueprint for a new computing

infrastructure. Elsevier.

4. Chiueh, S. N. T. C., & Brook, S. (2005). A survey on virtualization technologies. Rpe Report, 142.

5. Cafaro, M., & Aloisio, G. (2011). Grids, clouds, and virtualization. In Grids, Clouds and

Virtualization (pp. 1-21). Springer, London.

6. Foster, I., Zhao, Y., Raicu, I., & Lu, S. (2008, November). Cloud computing and grid computing

360-degree compared. In Grid Computing Environments Workshop, 2008. GCE'08 (pp. 1-10).

IEEE.

7. Youseff, L., Butrico, M., & Da Silva, D. (2008, November). Toward a unified ontology

of cloud computing. In Grid Computing Environments Workshop, 2008. GCE'08 (pp.

1-10). IEEE.

8. Mc Evoy, G. V., & Schulze, B. (2008, December). Using clouds to address grid limitations.

In Proceedings of the 6th international workshop on Middleware for grid computing (p.

11). ACM.

9. Lombardi, F., & Di Pietro, R. (2011). Secure virtualization for cloud computing. Journal

of Network and Computer Applications, 34(4), 1113-1122.

10. Lamport, L. (1979). How to make a multiprocessor computer that correctly executes

multiprocess progranm. IEEE transactions on computers, (9), 690-691.
11. Smith, R. (2009). Computing in the cloud. Research-Technology Management, 52(5), 65-68.

12. Wang, L., Tao, J., Kunze, M., Castellanos, A. C., Kramer, D., & Karl, W. (2008, September).

Scientific cloud computing: Early definition and experience. In High Performance Computing
and Communications, 2008. HPCC'08. 10th IEEE International Conference on (pp. 825-830).

Ieee.

