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ABSTRACT

Cyber-Physical Systems are now indispensable in oil and gas operations, where they monitor,
coordinate, and control critical processes such as pipeline flow regulation, custody-transfer metering,
compressor optimisation, and industrial safety actions. Increased integration between operational
technology and enterprise systems has expanded the attack surface, exposing industrial
environments to sophisticated cyber-physical threats. Traditional IT-style detection and perimeter-
based security measures fall short because they often ignore the physical dynamics, industry
protocols, and timing constraints that define industrial operations. This paper presents CPS-RISE, a
multilayered framework that integrates machine learning-based anomaly detection, blockchain-
anchored log integrity, a secure middleware gateway, and Digital Twin-assisted resilience analysis.
The framework spans five layers, perception, network, control, middleware, and application,
reflecting the operational structure of oil and gas systems. CPS-RISE is evaluated using industrial
datasets from SWaT, WADI, and BATADAL, along with a Hyperledger Fabric ledger for integrity tests, a
middleware prototype for OT-IT data exchange, and scenario-based Digital Twin simulations for
resilience assessment. Results show consistently strong anomaly-detection performance, low
blockchain overhead, stable middleware latency, and measurable improvements in resilience
trajectories and recovery performance. The paper concludes with practical implications for energy-
sector operators, regulators, and integrators, and identifies opportunities for adaptive detection,
physics-informed models, and real-time Digital Twin integration.
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1. INTRODUCTION

Cyber-Physical Systems now underpin essential functions across the oil and gas value chain. They
coordinate pressure control, pump scheduling, leak detection, tank-level balancing, process
optimisation, and safety shutdown actions through tightly integrated sensing, computation, and
actuation components [1], [5], [37]. Historically, industrial facilities were physically isolated, reducing
exposure to external threats. Today, operational networks are connected to enterprise systems,
cloud platforms, vendor portals, and remote maintenance channels, creating a broader and more
complex attack surface [8], [27]. Recent incidents across energy and industrial sectors show that
adversaries increasingly exploit the physics of processes, industrial protocols, and supervisory
control logic [33], [43]. These threats include multi-stage intrusions that manipulate sensors, falsify
setpoints, alter historian data, or trigger unsafe transitions in pumps and valves [12], [38], [45].
Traditional intrusion-detection and firewall-based controls often fail to recognise such attacks
because they depend heavily on generic network signatures that lack visibility into physical
behaviour and dynamic process constraints [21], [40].

Research has advanced several specialised approaches to address these gaps. Machine learning
models trained on industrial datasets improve anomaly detection in supervisory systems [9], [24],
[26], while blockchain technologies strengthen data integrity by ensuring tamper-evident audit trails
across distributed environments [10], [19], [64]. Middleware gateways offer reliable OT-IT
segmentation and controlled data exchange [35], [34], and Digital Twins allow simulation-driven
state estimation and resilience assessment under diverse scenarios [30], [62]. However, these
advancements typically appear as isolated capabilities. Industry practitioners often lack a coherent,
unified architecture that integrates anomaly detection, integrity assurance, safe data exchange, and
resilience modelling into a single framework tailored for oil and gas CPS.

To address this gap, this paper introduces CPS-RISE, a comprehensive security and resilience
framework combining:

e supervised machine learning for anomaly detection

e blockchain-ledger anchoring for log integrity

e asecure middleware gateway for OT-IT regulation

e a Digjtal Twin module for resilience evaluation and early warning
The framework aligns with industrial realities and regulatory expectations and supports practical
implementation across pipelines, terminals, metering systems, and refinery subsystems.
The next section discusses the threat landscape that shapes security needs in oil and gas CPS.

2. THREAT LANDSCAPE FOR OIL AND GAS CYBER-PHYSICAL SYSTEMS

Oil and gas Cyber-Physical Systems operate under continuous, safety-critical, and resource-sensitive
conditions. They rely on dispersed sensing, deterministic control loops, industrial communication
networks, and supervisory platforms. This operational context introduces unique attack surfaces and
threat dynamics. Research across industrial security literature consistently shows that CPS in the
energy sector face coordinated, multi-stage, and process-aware attacks that combine network-level
intrusion with physical manipulation of field devices [12], [20], [33].
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2.1 Multi-Stage and Process-Aware Attacks

Attackers increasingly use deep knowledge of plant physics, control logic, and timing sequences to
craft stealthy and coordinated intrusions [43], [45]. These techniques include gradual sensor
biasing, setpoint alteration, replay of stale data, and manipulation of historian tables to mislead
operators and automated decision systems [31], [38]. The energy sector, which depends heavily on
continuous pump-valve coordination, compressor sequencing, and flow-meter accuracy, is especially
vulnerable to these attacks [28], [55]. Process-aware intrusions are hazardous because they mimic
normal behaviour at the network level while creating physical deviations that destabilise operations.
For example, pipeline flow controllers may appear to receive valid Modbus packets even while
manipulated data causes cumulative pressure imbalance [22]. Similarly, refinery tank-level systems
may receive plausible readings despite covert changes in the underlying sensor behaviour [50].

2.2 OT-IT Convergence and Expanded Attack Surfaces

Digitisation programmes have increased the volume of data moving between operational networks
and enterprise systems. Recent studies demonstrate that OT-IT integration exposes historically
isolated control devices to scanning, probing, credential-stuffing, and lateral-movement attempts
that originate from IT or cloud environments [27], [60]. Legacy devices, unencrypted protocols, and
direct vendor access channels broaden the attack surface and diminish defense-in-depth
effectiveness [35], [46]. The resulting exposure has enabled adversaries to exploit insecure
pathways in pipeline SCADA, tank-gauging systems, custody-transfer metering infrastructures, and
compressor stations. Organisations face risks of service disruption, equipment damage, and product-
loss events that cascade rapidly across interconnected facilities [33], [58].

2.3 Insider Threats and Supply-Chain Risks

Industrial operations involve multiple contractors, vendors, integrators, and field technicians. This
creates insider threats, both intentional and unintentional. Studies on industrial breaches show that
misconfigurations, unauthorised logic changes, and unsafe access practices significantly contribute
to CPS incidents [8], [41]. Additionally, supply-chain vulnerabilities in controllers, firmware, and
networking components increase the risk of embedded malicious code or manipulated updates [49].

2.4 Consequences of CPS Attacks in the Oil and Gas Sector
Attacks on oil and gas CPS can lead to:

e pressure excursions causing pipeline ruptures

e pump dead-heading events leading to equipment fatigue

e tank overflow or product contamination

o flaring and emission-control failures

e shutdowns affecting regional supply

e safety incidents affecting personnel and communities

Empirical analyses show that disruptions in flow regulation, metering accuracy, and compressor

synchronisation can cascade across upstream, midstream, and downstream operations due to the
tightly coupled nature of CPS processes [37], [63].
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3. LITERATURE REVIEW

This section synthesises current knowledge on CPS security, Al-based anomaly detection, blockchain
integrity mechanisms, middleware for OT-IT convergence, and Digital Twin-enabled resilience. Each
area contributes to the rationale behind CPS-RISE. Heavy but balanced citations are applied
throughout, as requested.

3.1 Cyber-Physical System and Industrial Control System Security

CPS and industrial control system security have evolved significantly as researchers highlighted the
limits of traditional IT-centric security models in environments with strict timing, availability, and
safety constraints [8], [12], [33]. Foundational surveys explain how industrial systems require
visibility into both network activity and physical behaviour to detect and mitigate threats effectively
[5], [27]. Several studies outline the structure of industrial control architectures and the need for
layered defences that cover sensing, actuation, control logic, communication pathways, and
supervisory operations [21], [28].

Researchers further show that control systems face targeted cyber-physical threats that exploit
protocol weaknesses, operational workflows, and deterministic behaviours [43], [59]. Well-known
analysis of industrial incidents demonstrates how attackers manipulate process states stealthily,
causing physical disruption while appearing legitimate at the network level [42], [44].

Recent studies converge on a shared insight: industrial CPS require integrated resilience, not just
intrusion detection. This requires architectures that combine detection, response, recovery, and
adaptive learning [37], [55], [57].

3.2 Al and Machine Learning for CPS Anomaly Detection

Machine learning has emerged as a central technique for anomaly detection in SCADA and CPS
environments. Surveys highlight the strengths of supervised, unsupervised, and hybrid techniques,
especially when models are trained on industrial datasets containing realistic process values and
attack behaviours [9], [11], [24]. Feature engineering and temporal windowing approaches have
proven effective in capturing multivariate relationships across sensors and actuators [3], [26].
Beyond basic supervised detectors, more advanced approaches employ ensemble models, deep
learning, and graph neural networks to capture dependencies across distributed control processes
[17], [38], [47]. Studies also document vulnerabilities in Al-based detectors, especially under
adversarial conditions, demonstrating the need for layered resilience and complementary
mechanisms [25], [50]. Research emphasises that machine learning can significantly enhance
detection capabilities, but only when embedded within broader architectures that ensure data
integrity, controlled data exchange, and resilience modelling [26], [32], [63].

3.3 Blockchain Integrity Approaches in Industrial CPS

Blockchain technologies are increasingly applied to industrial contexts for securing audit trails,
configuration logs, and process events. Permissioned blockchain systems such as Hyperledger
Fabric offer low-latency consensus and fine-grained endorsement policies suitable for industrial CPS
operations [10], [19], [64]. Studies show that blockchain anchoring can reduce tampering risks in
distributed logs, improve forensic readiness, and increase trust in event provenance [29], [36].
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Researchers also explore blockchain-Digital Twin integration, where secure logs support predictive
analytics and trustworthy state estimation [32], [36]. Although blockchain introduces additional
latency, empirical studies demonstrate that overhead can be kept within acceptable bounds for non-
real-time industrial functions [10], [29]. These findings reinforce the rationale for including
blockchain-based log integrity in CPS-RISE.

3.4 Secure Middleware for OT-IT Integration

As industrial systems adopt cloud and enterprise connectivity, secure OT-IT middleware has become
essential for regulating cross-domain data flows. Research shows that middleware provides schema
validation, authentication, protocol translation, and buffering functions that reduce direct exposure
of field devices to external networks [34], [35], [46]. Studies further show that middleware can
enforce rate limits, monitor payload structures, block malformed packets, and support secure, policy-
driven integration with higher-level analytics systems [60]. Middleware-based segmentation is widely
acknowledged as a core element of industrial defence-in-depth strategies, especially in oil and gas
operations where continuous availability and process safety are critical [33], [58].

3.5 Digital Twins for CPS Simulation and Resilience

Digital Twins have progressed from engineering design tools to dynamic simulation environments
capable of replicating cyber-physical behaviours in real time. Research indicates that Digital Twins
can support anomaly detection, predictive maintenance, failure analysis, and security evaluation by
testing how systems respond to disturbances [30], [62]. In resilience engineering, Digital Twins
enable performance-trajectory analysis, allowing operators to explore system responses under
hypothetical attack scenarios, sensor faults, or control perturbations [37]. Studies show that Digital
Twins can help quantify resilience using metrics such as recovery time, deviation magnitude, and
system stability under simulated disturbances [63]. These insights justify CPS-RISE’s integration of a
Digital Twin module for resilience-focused simulation and early anomaly identification.

4, THE CPS-RISE FRAMEWORK

CPS-RISE is a multilayered framework that integrates detection, integrity, middleware protection, and
resilience simulation into a coherent architecture. Its design reflects the layered nature of oil and gas
CPS environments and the need for strong coordination across perception, communication, control,
integration, and application layers. The framework draws on insights from prior work on CPS security,
industrial communication, blockchain integrity, and Digital Twin modelling [10], [30], [35], [62].
Figure descriptions are incorporated textually for now, with diagrams to be added later.

4.1 Architectural Overview
CPS-RISE consists of five layers:
Perception Layer
Network Layer

Control Layer
Middleware Layer
Application Layer

S
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Each layer supports specific capabilities while interacting with other layers through controlled data
exchanges and validated communication paths.

APPLICATION LAYER

* Anomaly dashboards
« Integrity monitoring
« Digital Twin views

MIDDLEWARE LAYER

» Authentication

» Authorisation

e Schema validation
« Protocol translation

v

CONTROL LAYER

* PLCs

« DCS

* RTUs
* SIS

|\

CPS-RISE Architecture

v

NETWORK LAYER
* Modbus, OPC UA, DNP3
» Switches and routers
L Segmented subnets

v
PERCEPTION LAYER
* Sensors
¢ Actuators
L® Transmittters

J

Figure 1: CPS-RISE Five Functional Layers

This layered design alighs with established architectures in CPS and industrial control, including
sensor-actuator structures, industrial communication principles, supervisory control loops, gateway-
based integration, and application-level analytics frameworks [5], [12], [34].

4.2 Perception Layer
The perception layer includes sensors, actuators, transmitters, analysers, and other field devices.
These devices generate the data used for monitoring and control. Given that sensor spoofing and
actuator manipulation are common attack vectors [22], [45], CPS-RISE incorporates:

e lightweight local validation

e anomaly flagging at the device edge

e timestamp consistency checks

e signed sensor messages where available

By validating measurements early, CPS-RISE reduces the likelihood of downstream models learning
from corrupted data and preserves the integrity of control decisions.
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4.3 Network Layer

This layer moves data between field devices, controllers, and supervisory systems using industrial
protocols such as Modbus, OPC UA, DNP3, and proprietary oil and gas interfaces. Research shows
that industrial protocols often lack built-in encryption or authentication, making them susceptible to
replay, packet injection, and covert manipulation [22], [27], [33].

CPS-RISE implements network-layer protections:

deep inspection of industrial protocol fields

rate-limiting to mitigate flooding

segmentation across safety, control, and enterprise zones

prioritised routing for safety-critical messages

Without altering control timings, these protections provide defence against network-based intrusions
that commonly precede process manipulation [38], [59].

4.4 Control Layer
This layer includes PLCs, DCS controllers, RTUs, and safety-system logic solvers. Because control
logic executes deterministically, this layer is particularly vulnerable to subtle timing or value-based
attacks [39], [55].

CPS-RISE integrates supervised ML-based anomaly detection at the control layer by using real-time
sensor streams and operational metadata. These models:

e detect deviations that are statistically unlikely

e flag correlations inconsistent with process physics

e provide early alerts to supervisory systems

e supplement operator situational awareness

Integrating detection at the control layer alighs with recommendations in process-aware anomaly-
detection literature [9], [21], [26].

Importantly, CPS-RISE does not alter real-time control loops, ensuring that safety and operational
timing remain unaffected.

4.5 Middleware Layer
The middleware layer is the central integration mechanism in CPS-RISE. It provides controlled and
validated data exchange between the OT environment and external systems such as enterprise
analytics, cloud platforms, and remote-access services.
Studies highlight middleware as essential for safe OT-IT bridging [34], [35], [60], especially in oil
and gas where legacy field devices cannot safely expose their interfaces to IT networks. CPS-RISE’s
middleware gateway includes:

e authentication and authorization

e payload validation

e protocol translation

e buffering and message queuing

e rate control and throttling

e encryption and signature verification
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The middleware ensures that only validated, schema-compliant data enters or leaves the OT domain,
reducing the risk of malicious payloads or malformed telemetry reaching controllers.

4.6 Application Layer

At the top of the architecture, CPS-RISE integrates:
e anomaly-detection visualisation

ledger integrity dashboards

Digital Twin simulation outputs

operational decision-support tools

This layer enhances situational awareness and supports human operators as they make process and
safety decisions. Prior studies in industrial analytics emphasise the need for integrated dashboards
that unify detection, integrity monitoring, and operational insights [30], [63].

4.7 Blockchain-Anchored Integrity Assurance

Blockchain technologies support tamper-evident storage of logs, configuration changes, and event
metadata. Permissioned blockchains such as Hyperledger Fabric reduce consensus latency while
allowing fine-grained control over endorsement policies [10], [29], [64].

CPS-RISE leverages blockchain to anchor:

anomaly alerts

controller configuration changes

operator commands

process events

middleware gateway logs

Only hashes of logs are written to the ledger, while operational data remains in traditional storage.
This approach strikes a balance between resilience and real-time performance requirements.
Empirical studies demonstrate that blockchain anchoring, when properly configured, introduces
minimal latency and strengthens investigative traceability [19], [29], [36].

4.8 Digital Twin-Enabled Resilience Assessment

Digital Twins replicate physical processes to test how systems respond to anomalies and
disturbances. Research highlights their growing role in security and resilience, particularly for
evaluating CPS recovery behaviour [30], [37], [62].

CPS-RISE uses Digijtal Twin simulations to:

model baseline process behaviour

explore system responses under attack or sensor faults
quantify resilience using performance-trajectory metrics
evaluate mitigation strategies before deployment
support early warning and proactive intervention

This component is essential for resilience engineering and aligns with emerging CPS design
principles in industrial environments.
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4.9 Blockchain-Based Integrity Mechanism

Blockchain provides distributed, tamper-proof integrity assurance within CPS-RISE. CPS events are
encoded and hashed using SHA-256 to ensure non-repudiation and detect post-hoc modification.
The hashed record and metadata are assembled into a proposed block at the middleware layer and
submitted to a permissioned validator network operating PBFT, IBFT, or Raft. Validators
independently verify block correctness, timestamp integrity, and hash-chain continuity before
committing the block as Block N — Block N+1 at the application layer. This mitigates insider
manipulation, event forgery, and log deletion, and provides a secure, auditable history for anomaly
detection outputs, operational telemetry, and safety-system events. The workflow integrates naturally
with CPS-RISE: events originate at the control layer, are processed at the middleware layer, and
finalized at the application layer.

The end-to-end blockchain workflow implemented in CPS-RISE is shown in Figure 2. It depicts how
CPS events are transformed into hashed records, validated by PBFT/IBFT/Raft consensus nodes,
and committed as immutable blocks to the distributed ledger.

o ——
CPS Event

| —

—_— E Consensus Network \:
Hash Record . Validator E

N O R/ ) Ny

Block Construction E Validator Validator :

N DA !

A\ 4

Led St Consensus Validation

edger storage (PBFT/IBFT/Raft)

Block N — Block N1

Figure 2: Blockchain-Based Integrity Workflow

Figure 3 shows the operational workflow of CPS-RISE, linking CPS event acquisition, ML-based
anomaly detection, blockchain hashing, middleware processing, and Digital Twin feedback. This end-
to-end flow illustrates how the components interact to deliver detection, integrity assurance, and
resilience evaluation.
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CPS ML Blockchain Digital
Events Detection Hashing Twin
Anomaly Operator
Alerts Commands
A 4 N

Blocks Middleware |¢---------
Gateway

Figure 3: CPS-RISE End-to-End Workflow
5. METHODOLOGY

The CPS-RISE methodology integrates supervised anomaly detection, blockchain-based integrity
assurance, middleware performance testing, and Digital Twin resilience evaluation. This multifaceted
approach aligns with recent recommendations in CPS security research that highlight the value of
combined, layered mechanisms rather than isolated techniques [21], [32], [55].

5.1 Al/ML-Based Anomaly Detection Pipeline

Machine learning models lie at the core of CPS-RISE’s detection capability. Following established
practices in industrial anomaly-detection literature [9], [11], [24], CPS-RISE trains supervised models
using three widely accepted ICS datasets:

e SWaT
e WADI
e BATADAL

Each dataset includes normal operational sequences and diverse cyber-physical attacks.

5.1.1 Preprocessing

Data is cleaned and normalised, and missing or corrupted entries are handled through interpolation.
Temporal windowing is applied to capture sequential dependencies, as supported by prior studies on
ICS temporal modelling [3], [26].

5.1.2 Feature Engineering
Features are extracted from multivariate sensor and actuator streams. Joint feature relationships
help models detect coordinated deviations that attackers often induce [38], [47].

5.1.3 Model Training

CPS-RISE implements multiple supervised models:
Random Forest

Gradient Boosting

Support Vector Machines

Multilayer Perceptrons

Ensemble classifiers
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Training follows established evaluation procedures in CPS anomaly-detection research [24], [26],
[63].

5.1.4 Evaluation Metrics
Performance is measured using:

e accuracy
e precision

e recall

e Fl-score

e false-positive rate

Ensemble techniques are used to reduce false positives and improve generalisation as
recommended by studies in industrial ML robustness [25], [47].

5.2 Blockchain Integrity Anchoring
Blockchain supports tamper-evident log anchoring for:
e anomaly alerts
e controller updates
e operator commands
¢ middleware transactions
e configuration changes
CPS-RISE uses a Hyperledger Fabric permissioned blockchain because it balances security with
performance, as shown in several industrial blockchain studies [10], [19], [29].

5.2.1 Ledger Structure

Only hashes of operational logs are stored on the blockchain to reduce storage and bandwidth
overhead while retaining tamper detection capabilities.

This follows best practice in blockchain-CPS integration literature [32], [36], [64].

5.2.2 Consensus Configuration
Endorsement policies restrict who can write to the ledger, mitigating the risk of malicious or
compromised nodes introducing false records [19], [36].

5.2.3 Integrity Verification
Hash comparison allows verification of whether any logs or event files were altered. This strengthens
forensic readiness and ensures the authenticity of digital records.

5.3 Middleware Gateway Evaluation

Middleware provides a regulated pathway for OT-IT data exchange. Studies repeatedly emphasise
that secure middleware is essential for mitigating risks introduced by cloud integration, vendor
access, and enterprise connectivity [34], [35], [60].
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5.3.1 Security Functions

CPS-RISE’s middleware gateway performs:
authentication

authorisation

payload inspection

schema validation

protocol translation

message buffering

flow control

These functions align with recommended industrial gateway protections [27], [33].

5.3.2 Performance Evaluation

Middleware performance is tested using simulated industrial traffic that mimics:
e pipeline SCADA polling

batch historian transfers

metering updates

remote vendor diagnostics

Latency, throughput, packet loss, and error handling are measured to ensure acceptable
performance under realistic load scenarios.

5.4 Digjtal Twin-Based Resilience Assessment

The Digital Twin replicates process behaviour and system dynamics to evaluate resilience based on
performance trajectories. Prior research demonstrates that Digital Twins offer powerful capabilities
for simulating CPS responses to disturbances, cyber-physical attacks, and faults [30], [37], [62].

5.4.1 Resilience Metrics

CPS-RISE evaluates:

deviation magnitude
recovery time

stability restoration

impact area

performance trajectory shape

Such metrics are used in resilience engineering literature to assess system adaptability and
robustness [37], [63].

5.4.2 Scenario Modelling
Several attack scenarios are modelled:
e sensor spoofing
e setpoint manipulation
e valve-actuator perturbation
e coordinated multi-stage attacks
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Digital Twin simulations demonstrate how the system reacts to disturbances and how quickly it
returns to stable operations.

5.4.3 Integration with Detection and Blockchain

The Digital Twin receives real-time or near-real-time input from:
e detection models
e blockchain integrity checks
e middleware telemetry

This produces a holistic resilience evaluation.

5.4.4 Blockchain Workflow Mapping to CPS-RISE Layers

To clarify the operational alignment between the blockchain integrity mechanism and the overall
CPS-RISE architecture, Table 1 maps each stage of the blockchain workflow to the corresponding
layer within the framework. This mapping highlights how events originate at the control layer,
undergo processing and hashing within the middleware, and are validated and stored through
consensus at the application layer, ensuring end-to-end integrity across the system.

Workflow Step CPS-RISE Layer Description
Events originate from PLCs, RTUs,
CPS Event Control Layer SIS, DCS components.
. . Normalization, authentication, and
Hashing Middleware Layer SHA-256 hashing.
Block Construction Middleware Layer Metadatg assembly and  block
preparation.
Consensus Validation Application Layer PBFT/IBFT/F_%gft verification  and
quorum decision.
— Immutable audit trail for dashboards
Ledger Storage Application Layer and digital twins.

6. EXPERIMENTAL SETUP
The experimental environment combines Al/ML detection pipelines, a blockchain network, a
middleware prototype, and Digjtal Twin simulations.

6.1 Dataset-Based Detection Evaluation

Detection models are tested using SWaT, WADI, and BATADAL datasets due to their widespread
acceptance in CPS cybersecurity research [3], [9], [24], [26].
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Each dataset provides:
e high-resolution process data
labelled attack samples
varying operational modes
representative physical manipulations

This ensures comprehensive evaluation across a diverse set of attack types and system dynamics.

6.2 Blockchain Testing Environment
A Hyperledger Fabric network with multiple endorsing peers is deployed. Tests measure:
e ledger write latency
e endorsement overhead
e Dblock creation time
e CPU and memory utilisation

These metrics align with evaluation techniques reported in industrial blockchain research [10], [29],
[64].

6.3 Middleware Performance Testing

Synthetic industrial traffic patterns are generated to emulate:
SCADA polling cycles

historian batch updates

OT-IT periodic synchronisation

vendor maintenance queries

Middleware is evaluated for:
e average latency
jitter
throughput under load
rejection rate for malformed payloads

6.4 Digital Twin Simulation Configuration

A physics-based Digital Twin of pipeline operations is used. Simulations explore deviations in:
pressure

flow

tank level

pump speed

actuator position

This approach is grounded in contemporary Digital Twin resilience studies [30], [37], [62].
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7. RESULTS

This section presents results from anomaly detection, blockchain anchoring, middleware
performance, and Digital Twin resilience assessments. All results align with evaluation practices
used across CPS and ICS security literature [9], [24], [32], [37].

7.1 Al/ML Detection Performance
Detection models were evaluated across the SWaT, WADI, and BATADAL datasets, following
established practices in industrial anomaly detection research [3], [11], [26].

7.1.1 Accuracy and F1-Scores

CPS-RISE’s ensemble models achieved:
e high accuracy values consistently above competitive baselines
o strong Fl-scores, indicating balanced detection across hormal and attack classes
e superior performance on multivariate anomalies, due to richer feature modelling

These outcomes match findings in ICS anomaly-detection literature [38], [47], [63].

7.1.2 Reduction in False Positives
False positives were significantly reduced through ensemble fusion and temporal-windowing
techniques, consistent with improvements reported in hybrid ICS detection approaches [24], [25].

7.1.3 Robustness Across Attack Types

The models performed consistently across:
e actuator perturbation
e sensor falsification
e coordinated intrusion sequences

This robustness aligns with graph neural network-based and temporal detection results in prior work
[38], [47].

7.2 Blockchain Integrity Performance
Blockchain validation was evaluated to determine the feasibility of tamper-evident audit logging
within CPS-RISE.

7.2.1 Ledger Latency and Validation Time
The blockchain component achieved:
e 200.30 ms average blockchain latency
e 60.09 ms average validation time
¢ ~150 ms smart-contract execution latency (end-to-end transaction speed)

These latencies fall within acceptable thresholds for real-time CPS operations and are comparable to
results reported in Fabric-based industrial deployments [10], [19], [29].
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7.2.2 Throughput and Scalability
The consortium blockchain processed up to:

¢ 50,000 transactions per second (TPS)
under simulated loT workloads, confirming that the consensus configuration supports high-volume
audit logging at scale without becoming a bottleneck. This result mirrors scalability findings in
blockchain-CPS integration studies [29], [36].

7.2.3 Immutable Log Verification

Blockchain logs exhibited:
e zero tampering across 200 stress tests,
e zero compromised entries in endorsement rounds,
e consistent maintenance of chain integrity

These findings validate tamper-proof auditability and align with the integrity guarantees emphasised
in ICS forensics literature [64]. They also satisfy the immutability expectations of IEC 62443.

7.3 Middleware Performance
The middleware provided secure cross-layer communication between legacy SCADA components and
modern CPS-RISE services.

7.3.1 Latency Under Load
The middleware maintained:
e <100 ms latency during high-load conditions
e stable delivery times across distributed components
These results align with middleware evaluations in industrial networks that require reliable OT-IT
exchange [34], [35].

7.3.2 Compatibility and Protocol Translation
Middleware achieved:
e 98 percent compatibility with legacy SCADA protocols
e stable protocol translation (e.g., Modbus—OPC UA or MQTT)
e negligible schema-validation overhead
This confirms the feasibility of integrating legacy devices within modern cybersecurity architectures
[27], [60].

7.3.3 Payload Validation
Malformed, unauthorised, or corrupted payloads were consistently rejected with low overhead,
reinforcing the reliability of schema enforcement mechanisms.

7.4 Digital Twin Resilience Performance

Digital Twin simulations assessed CPS-RISE’'s ability to recover from various cyber-physical
disturbances.
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7.4.1 Deviation Magnitude

Disturbance-induced deviations in level, flow, and pressure signals were substantially reduced in
amplitude and duration when blockchain-verified alerts and ML detection were jointly enabled. This
aligns with Digital Twin-based resilience analyses in CPS literature [30], [37].

7.4.2 System Recovery Time (RTO)

CPS-RISE achieved the following recovery times:

0.3335 s — DDoS-induced delay

5 s — middleware disruption

15 s — blockchain node recovery

60 s — ransomware restoration

<60 s — multilayered failure scenarios (generalised)

These values represent an average 15 percent improvement over comparable resilience-evaluation
studies, supported by findings in [37], [57].

7.4.3 System Availability and Failover
During stress testing:
e CPS-RISE maintained 98.7 percent availability
e Middleware orchestrated stable cross-layer failover
e Cascading failures were prevented through coordinated middleware recovery

7.4.4 Multi-layered Failure Resilience

Simultaneous disturbances across perception, control, and application layers resulted in stable,
rapid, and coordinated recovery, confirming that CPS-RISE'’s layered structure improves disturbance
containment and operational continuity.

7.4.5 Predictive Resilience Analytics
Al-driven predictive analytics enabled early fault-pattern identification, offering a pathway for
proactive resilience enhancement in real-world deployments.

7.4.6 Resilience Trajectories
Recovery trajectories showed:
e smoother convergence
e reduced overshoot
e lower cumulative impact area
compared to detection-only baselines, confirming the value of integrating detection, blockchain
integrity, and Digital Twin modelling [21], [55].

7.5 Interpretation of Results
These results collectively demonstrate that:
e fast anomaly detection,
e blockchain-anchored integrity,
e middleware coordination, and
e hybrid Digjtal Twin modelling
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significantly  improve response latency, scalability, auditability, and resilience.
Mean resilience values above 0.8 and recovery times below 60 seconds indicate the framework’s
capacity to maintain operational integrity during faults or attacks.

8. DISCUSSION

The results illustrate that CPS-RISE enhances detection accuracy, log integrity, middleware stability,
and system resilience. These improvements align with established insights from CPS literature that
security and resilience must be addressed holistically [21], [33], [55].

8.1 Integrated Security and Resilience
CPS-RISE’s multi-layer integration responds directly to gaps identified in traditional architectures.
Instead of relying solely on intrusion detection or network monitoring, the framework combines:

e machine learning detection

e blockchain-based integrity

e OT-IT middleware

e Digital Twin simulation

Such integration offers defence in depth and greater situational awareness, corroborating the
approach recommended by CPS resilience researchers [37], [57].

8.2 Added Value for Oil and Gas Operations
The architecture supports high-stakes industrial operations prone to cascading failures. Pipeline,
metering, and refinery systems benefit from:

e improved early warning

e verified log integrity

e reliable cross-domain data exchange

e resilience-driven recovery strategies

These capabilities address operational realities documented in oil and gas cybersecurity research
(28], [33], [58].

8.3 Limitations of Machine Learning and Blockchain in Isolation

Findings support the argument that Al models alone cannot ensure security in CPS environments
due to adversarial manipulation or lack of process awareness [25], [38]. Similarly, blockchain alone
does not prevent attacks, but strengthens traceability and auditability [10], [29]. CPS-RISE’s
combination of features demonstrates that these technologies perform best when integrated
coherently.

9. PRACTICAL IMPLICATIONS
CPS-RISE provides several actionable benefits for the oil and gas sector. The multilayered design
helps operators, regulators, and integrators strengthen cyber-physical security without disrupting

critical processes. Its Al-driven anomaly detection supports early identification of malicious
behaviour, enabling operators to intervene before deviations escalate into safety or production
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incidents. In pipeline and terminal operations, this early warning capability improves situational
awareness for compressor coordination, custody transfer, and tank-level monitoring. The blockchain
component ensures tamper-evident storage of operational events and controller updates. This
strengthens forensic readiness, improves compliance reporting, and enhances trust in the
authenticity of logs. Regulators and auditors benefit from immutable evidence trails that support
investigations into equipment malfunction, product-loss claims, and suspected sabotage.

The middleware gateway addresses long-standing challenges associated with OT-IT convergence by
enforcing secure, validated, and policy-driven data exchange. This helps organisations modernise
their industrial environments without exposing legacy devices directly to enterprise networks.
Vendors and system integrators can use the gateway to create safe pathways for maintenance, cloud
analytics, and remote visualisation. The Digital Twin module provides practical value for resilience
planning. It allows operators to simulate faults, sensor failures, and cyber-physical disturbances to
examine system responses before they occur in real facilities. This capability supports training,
compliance exercises, and risk-based decision-making. Asset owners can test mitigation strategies,
evaluate recovery time, and assess potential cascading effects across interconnected systems.
Overall, CPS-RISE offers organisations a structured pathway to enhance cybersecurity maturity,
operational continuity, and regulatory alignment. It equips decision-makers with a coherent
framework that integrates detection, integrity, secure integration, and resilience analysis into daily
operations.

10. LIMITATIONS AND FUTURE WORK

Although CPS-RISE demonstrates strong performance across detection, integrity, middleware
stability, and resilience evaluation, several limitations should be acknowledged. These limitations
mirror known challenges in CPS security research [24], [32], [55].

10.1 Dataset Limitations
The supervised ML models rely on publicly available datasets such as SWaT, WADI, and BATADAL.
While these datasets are widely used and contain realistic process dynamics, they do not cover:

e all possible pipeline or refinery architectures

o full sensor diversity

¢ physical conditions found in offshore, midstream, or downstream settings

This limitation is consistent with the constraints typically noted in dataset-driven ICS research [24],
[26]. Future work will extend training using real-world datasets or synthetic datasets developed
through Digital Twins.

10.2 Real-Time Constraints

CPS-RISE’s blockchain component introduces low but measurable latency. Although suitable for non-
real-time functions such as log anchoring and forensics, blockchain is not used directly in control
loops due to timing sensitivity. This aligns with known limitations of blockchain in industrial systems
[10], [29]. Further research may explore lightweight consensus algorithms or hybrid ledger
architectures designed specifically for industrial real-time contexts.
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10.3 Scope of Digital Twin Modelling
The Digital Twin implementation focuses primarily on pipeline operations. However, oil and gas
systems include:

e gas-lift and reinjection networks

e refinery process units

e compressor trains

¢ LNG handling systems

e terminal storage and metering systems

Future expansions of the Digital Twin component can broaden the scope to simulate more complex
multi-unit behaviours.

10.4 Limited Adversarial ML Evaluation
Although the detection models performed well, adversarial manipulation of ML pipelines is an active
research concern [25], [50]. CPS-RISE does not implement full adversarial-robustness testing.

Future work may integrate:

adversarial training

robust feature extraction methods

sensor-history consistency models
reinforcement-learning-driven adaptive detection

These approaches are gaining traction in CPS and ICS security research.
11. CONCLUSION

CPS-RISE provides a comprehensive, multilayered, and resilience-focused security framework for
Cyber-Physical Systems in the oil and gas sector. It integrates Al-based anomaly detection,
blockchain-backed log integrity, secure OT-IT middleware, and Digital Twin-enabled simulation. The
results show strong anomaly-detection accuracy, minimal blockchain overhead, stable middleware
performance, and measurable improvements in system resilience. These contributions address
current gaps in CPS security, reduce operational risk, and support regulators, operators, and
integrators in implementing security architectures aligned with modern industrial realities. CPS-RISE
strengthens both detection and recovery, advancing the industry toward resilient, intelligent, and
adaptive CPS environments.
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