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ABSTRACT 
 
Cyber-Physical Systems are now indispensable in oil and gas operations, where they monitor, 
coordinate, and control critical processes such as pipeline flow regulation, custody-transfer metering, 
compressor optimisation, and industrial safety actions. Increased integration between operational 
technology and enterprise systems has expanded the attack surface, exposing industrial 
environments to sophisticated cyber-physical threats. Traditional IT-style detection and perimeter-
based security measures fall short because they often ignore the physical dynamics, industry 
protocols, and timing constraints that define industrial operations. This paper presents CPS-RISE, a 
multilayered framework that integrates machine learning–based anomaly detection, blockchain-
anchored log integrity, a secure middleware gateway, and Digital Twin–assisted resilience analysis. 
The framework spans five layers, perception, network, control, middleware, and application, 
reflecting the operational structure of oil and gas systems. CPS-RISE is evaluated using industrial 
datasets from SWaT, WADI, and BATADAL, along with a Hyperledger Fabric ledger for integrity tests, a 
middleware prototype for OT–IT data exchange, and scenario-based Digital Twin simulations for 
resilience assessment. Results show consistently strong anomaly-detection performance, low 
blockchain overhead, stable middleware latency, and measurable improvements in resilience 
trajectories and recovery performance. The paper concludes with practical implications for energy-
sector operators, regulators, and integrators, and identifies opportunities for adaptive detection, 
physics-informed models, and real-time Digital Twin integration. 
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1. INTRODUCTION 
 

Cyber-Physical Systems now underpin essential functions across the oil and gas value chain. They 
coordinate pressure control, pump scheduling, leak detection, tank-level balancing, process 
optimisation, and safety shutdown actions through tightly integrated sensing, computation, and 
actuation components [1], [5], [37]. Historically, industrial facilities were physically isolated, reducing 
exposure to external threats. Today, operational networks are connected to enterprise systems, 
cloud platforms, vendor portals, and remote maintenance channels, creating a broader and more 
complex attack surface [8], [27]. Recent incidents across energy and industrial sectors show that 
adversaries increasingly exploit the physics of processes, industrial protocols, and supervisory 
control logic [33], [43]. These threats include multi-stage intrusions that manipulate sensors, falsify 
setpoints, alter historian data, or trigger unsafe transitions in pumps and valves [12], [38], [45]. 
Traditional intrusion-detection and firewall-based controls often fail to recognise such attacks 
because they depend heavily on generic network signatures that lack visibility into physical 
behaviour and dynamic process constraints [21], [40]. 
 
Research has advanced several specialised approaches to address these gaps. Machine learning 
models trained on industrial datasets improve anomaly detection in supervisory systems [9], [24], 
[26], while blockchain technologies strengthen data integrity by ensuring tamper-evident audit trails 
across distributed environments [10], [19], [64]. Middleware gateways offer reliable OT–IT 
segmentation and controlled data exchange [35], [34], and Digital Twins allow simulation-driven 
state estimation and resilience assessment under diverse scenarios [30], [62]. However, these 
advancements typically appear as isolated capabilities. Industry practitioners often lack a coherent, 
unified architecture that integrates anomaly detection, integrity assurance, safe data exchange, and 
resilience modelling into a single framework tailored for oil and gas CPS. 
 
To address this gap, this paper introduces CPS-RISE, a comprehensive security and resilience 
framework combining: 

 supervised machine learning for anomaly detection 
 blockchain-ledger anchoring for log integrity 
 a secure middleware gateway for OT–IT regulation 
 a Digital Twin module for resilience evaluation and early warning 

 
The framework aligns with industrial realities and regulatory expectations and supports practical 
implementation across pipelines, terminals, metering systems, and refinery subsystems. 
The next section discusses the threat landscape that shapes security needs in oil and gas CPS. 
 
2. THREAT LANDSCAPE FOR OIL AND GAS CYBER-PHYSICAL SYSTEMS 
 
Oil and gas Cyber-Physical Systems operate under continuous, safety-critical, and resource-sensitive 
conditions. They rely on dispersed sensing, deterministic control loops, industrial communication 
networks, and supervisory platforms. This operational context introduces unique attack surfaces and 
threat dynamics. Research across industrial security literature consistently shows that CPS in the 
energy sector face coordinated, multi-stage, and process-aware attacks that combine network-level 
intrusion with physical manipulation of field devices [12], [20], [33]. 
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2.1 Multi-Stage and Process-Aware Attacks 
Attackers increasingly use deep knowledge of plant physics, control logic, and timing sequences to 
craft stealthy and coordinated intrusions [43], [45]. These techniques include gradual sensor 
biasing, setpoint alteration, replay of stale data, and manipulation of historian tables to mislead 
operators and automated decision systems [31], [38]. The energy sector, which depends heavily on 
continuous pump-valve coordination, compressor sequencing, and flow-meter accuracy, is especially 
vulnerable to these attacks [28], [55]. Process-aware intrusions are hazardous because they mimic 
normal behaviour at the network level while creating physical deviations that destabilise operations. 
For example, pipeline flow controllers may appear to receive valid Modbus packets even while 
manipulated data causes cumulative pressure imbalance [22]. Similarly, refinery tank-level systems 
may receive plausible readings despite covert changes in the underlying sensor behaviour [50]. 
 
2.2 OT–IT Convergence and Expanded Attack Surfaces 
Digitisation programmes have increased the volume of data moving between operational networks 
and enterprise systems. Recent studies demonstrate that OT–IT integration exposes historically 
isolated control devices to scanning, probing, credential-stuffing, and lateral-movement attempts 
that originate from IT or cloud environments [27], [60]. Legacy devices, unencrypted protocols, and 
direct vendor access channels broaden the attack surface and diminish defense-in-depth 
effectiveness [35], [46]. The resulting exposure has enabled adversaries to exploit insecure 
pathways in pipeline SCADA, tank-gauging systems, custody-transfer metering infrastructures, and 
compressor stations. Organisations face risks of service disruption, equipment damage, and product-
loss events that cascade rapidly across interconnected facilities [33], [58]. 
 
2.3 Insider Threats and Supply-Chain Risks 
Industrial operations involve multiple contractors, vendors, integrators, and field technicians. This 
creates insider threats, both intentional and unintentional. Studies on industrial breaches show that 
misconfigurations, unauthorised logic changes, and unsafe access practices significantly contribute 
to CPS incidents [8], [41]. Additionally, supply-chain vulnerabilities in controllers, firmware, and 
networking components increase the risk of embedded malicious code or manipulated updates [49]. 
 
2.4 Consequences of CPS Attacks in the Oil and Gas Sector 
Attacks on oil and gas CPS can lead to: 

 pressure excursions causing pipeline ruptures 
 pump dead-heading events leading to equipment fatigue 
 tank overflow or product contamination 
 flaring and emission-control failures 
 shutdowns affecting regional supply 
 safety incidents affecting personnel and communities 

 
Empirical analyses show that disruptions in flow regulation, metering accuracy, and compressor 
synchronisation can cascade across upstream, midstream, and downstream operations due to the 
tightly coupled nature of CPS processes [37], [63]. 
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3. LITERATURE REVIEW 
 
This section synthesises current knowledge on CPS security, AI-based anomaly detection, blockchain 
integrity mechanisms, middleware for OT–IT convergence, and Digital Twin–enabled resilience. Each 
area contributes to the rationale behind CPS-RISE. Heavy but balanced citations are applied 
throughout, as requested. 
 
3.1 Cyber-Physical System and Industrial Control System Security 
CPS and industrial control system security have evolved significantly as researchers highlighted the 
limits of traditional IT-centric security models in environments with strict timing, availability, and 
safety constraints [8], [12], [33]. Foundational surveys explain how industrial systems require 
visibility into both network activity and physical behaviour to detect and mitigate threats effectively 
[5], [27]. Several studies outline the structure of industrial control architectures and the need for 
layered defences that cover sensing, actuation, control logic, communication pathways, and 
supervisory operations [21], [28]. 
Researchers further show that control systems face targeted cyber-physical threats that exploit 
protocol weaknesses, operational workflows, and deterministic behaviours [43], [59]. Well-known 
analysis of industrial incidents demonstrates how attackers manipulate process states stealthily, 
causing physical disruption while appearing legitimate at the network level [42], [44]. 
Recent studies converge on a shared insight: industrial CPS require integrated resilience, not just 
intrusion detection. This requires architectures that combine detection, response, recovery, and 
adaptive learning [37], [55], [57]. 
 
3.2 AI and Machine Learning for CPS Anomaly Detection 
Machine learning has emerged as a central technique for anomaly detection in SCADA and CPS 
environments. Surveys highlight the strengths of supervised, unsupervised, and hybrid techniques, 
especially when models are trained on industrial datasets containing realistic process values and 
attack behaviours [9], [11], [24]. Feature engineering and temporal windowing approaches have 
proven effective in capturing multivariate relationships across sensors and actuators [3], [26]. 
Beyond basic supervised detectors, more advanced approaches employ ensemble models, deep 
learning, and graph neural networks to capture dependencies across distributed control processes 
[17], [38], [47]. Studies also document vulnerabilities in AI-based detectors, especially under 
adversarial conditions, demonstrating the need for layered resilience and complementary 
mechanisms [25], [50]. Research emphasises that machine learning can significantly enhance 
detection capabilities, but only when embedded within broader architectures that ensure data 
integrity, controlled data exchange, and resilience modelling [26], [32], [63]. 
 
3.3 Blockchain Integrity Approaches in Industrial CPS 
Blockchain technologies are increasingly applied to industrial contexts for securing audit trails, 
configuration logs, and process events. Permissioned blockchain systems such as Hyperledger 
Fabric offer low-latency consensus and fine-grained endorsement policies suitable for industrial CPS 
operations [10], [19], [64]. Studies show that blockchain anchoring can reduce tampering risks in 
distributed logs, improve forensic readiness, and increase trust in event provenance [29], [36]. 
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Researchers also explore blockchain–Digital Twin integration, where secure logs support predictive 
analytics and trustworthy state estimation [32], [36]. Although blockchain introduces additional 
latency, empirical studies demonstrate that overhead can be kept within acceptable bounds for non-
real-time industrial functions [10], [29]. These findings reinforce the rationale for including 
blockchain-based log integrity in CPS-RISE. 
 
 
3.4 Secure Middleware for OT–IT Integration 
As industrial systems adopt cloud and enterprise connectivity, secure OT–IT middleware has become 
essential for regulating cross-domain data flows. Research shows that middleware provides schema 
validation, authentication, protocol translation, and buffering functions that reduce direct exposure 
of field devices to external networks [34], [35], [46]. Studies further show that middleware can 
enforce rate limits, monitor payload structures, block malformed packets, and support secure, policy-
driven integration with higher-level analytics systems [60]. Middleware-based segmentation is widely 
acknowledged as a core element of industrial defence-in-depth strategies, especially in oil and gas 
operations where continuous availability and process safety are critical [33], [58]. 
 
3.5 Digital Twins for CPS Simulation and Resilience 
Digital Twins have progressed from engineering design tools to dynamic simulation environments 
capable of replicating cyber-physical behaviours in real time. Research indicates that Digital Twins 
can support anomaly detection, predictive maintenance, failure analysis, and security evaluation by 
testing how systems respond to disturbances [30], [62]. In resilience engineering, Digital Twins 
enable performance-trajectory analysis, allowing operators to explore system responses under 
hypothetical attack scenarios, sensor faults, or control perturbations [37]. Studies show that Digital 
Twins can help quantify resilience using metrics such as recovery time, deviation magnitude, and 
system stability under simulated disturbances [63]. These insights justify CPS-RISE’s integration of a 
Digital Twin module for resilience-focused simulation and early anomaly identification. 
 
4. THE CPS-RISE FRAMEWORK 
 
CPS-RISE is a multilayered framework that integrates detection, integrity, middleware protection, and 
resilience simulation into a coherent architecture. Its design reflects the layered nature of oil and gas 
CPS environments and the need for strong coordination across perception, communication, control, 
integration, and application layers. The framework draws on insights from prior work on CPS security, 
industrial communication, blockchain integrity, and Digital Twin modelling [10], [30], [35], [62]. 
Figure descriptions are incorporated textually for now, with diagrams to be added later. 
 
4.1 Architectural Overview 
CPS-RISE consists of five layers: 

1. Perception Layer 
2. Network Layer 
3. Control Layer 
4. Middleware Layer 
5. Application Layer 
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Each layer supports specific capabilities while interacting with other layers through controlled data 
exchanges and validated communication paths. 

 
Figure 1: CPS-RISE Five Functional Layers 

 
This layered design aligns with established architectures in CPS and industrial control, including 
sensor–actuator structures, industrial communication principles, supervisory control loops, gateway-
based integration, and application-level analytics frameworks [5], [12], [34]. 
 
4.2 Perception Layer 
The perception layer includes sensors, actuators, transmitters, analysers, and other field devices. 
These devices generate the data used for monitoring and control. Given that sensor spoofing and 
actuator manipulation are common attack vectors [22], [45], CPS-RISE incorporates: 

 lightweight local validation 
 anomaly flagging at the device edge 
 timestamp consistency checks 
 signed sensor messages where available 

 
By validating measurements early, CPS-RISE reduces the likelihood of downstream models learning 
from corrupted data and preserves the integrity of control decisions. 
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4.3 Network Layer 
This layer moves data between field devices, controllers, and supervisory systems using industrial 
protocols such as Modbus, OPC UA, DNP3, and proprietary oil and gas interfaces. Research shows 
that industrial protocols often lack built-in encryption or authentication, making them susceptible to 
replay, packet injection, and covert manipulation [22], [27], [33]. 
CPS-RISE implements network-layer protections: 

 deep inspection of industrial protocol fields 
 rate-limiting to mitigate flooding 
 segmentation across safety, control, and enterprise zones 
 prioritised routing for safety-critical messages 

 
Without altering control timings, these protections provide defence against network-based intrusions 
that commonly precede process manipulation [38], [59]. 
 
4.4 Control Layer 
This layer includes PLCs, DCS controllers, RTUs, and safety-system logic solvers. Because control 
logic executes deterministically, this layer is particularly vulnerable to subtle timing or value-based 
attacks [39], [55]. 
 
CPS-RISE integrates supervised ML-based anomaly detection at the control layer by using real-time 
sensor streams and operational metadata. These models: 

 detect deviations that are statistically unlikely 
 flag correlations inconsistent with process physics 
 provide early alerts to supervisory systems 
 supplement operator situational awareness 

 
Integrating detection at the control layer aligns with recommendations in process-aware anomaly-
detection literature [9], [21], [26]. 
Importantly, CPS-RISE does not alter real-time control loops, ensuring that safety and operational 
timing remain unaffected. 
 
4.5 Middleware Layer 
The middleware layer is the central integration mechanism in CPS-RISE. It provides controlled and 
validated data exchange between the OT environment and external systems such as enterprise 
analytics, cloud platforms, and remote-access services. 
Studies highlight middleware as essential for safe OT–IT bridging [34], [35], [60], especially in oil 
and gas where legacy field devices cannot safely expose their interfaces to IT networks. CPS-RISE’s 
middleware gateway includes: 

 authentication and authorization 
 payload validation 
 protocol translation 
 buffering and message queuing 
 rate control and throttling 
 encryption and signature verification 
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The middleware ensures that only validated, schema-compliant data enters or leaves the OT domain, 
reducing the risk of malicious payloads or malformed telemetry reaching controllers. 
 
4.6 Application Layer 
At the top of the architecture, CPS-RISE integrates: 

 anomaly-detection visualisation 
 ledger integrity dashboards 
 Digital Twin simulation outputs 
 operational decision-support tools 

 
This layer enhances situational awareness and supports human operators as they make process and 
safety decisions. Prior studies in industrial analytics emphasise the need for integrated dashboards 
that unify detection, integrity monitoring, and operational insights [30], [63]. 
 
4.7 Blockchain-Anchored Integrity Assurance 
Blockchain technologies support tamper-evident storage of logs, configuration changes, and event 
metadata. Permissioned blockchains such as Hyperledger Fabric reduce consensus latency while 
allowing fine-grained control over endorsement policies [10], [29], [64]. 
CPS-RISE leverages blockchain to anchor: 

 anomaly alerts 
 controller configuration changes 
 operator commands 
 process events 
 middleware gateway logs 

 
Only hashes of logs are written to the ledger, while operational data remains in traditional storage. 
This approach strikes a balance between resilience and real-time performance requirements. 
Empirical studies demonstrate that blockchain anchoring, when properly configured, introduces 
minimal latency and strengthens investigative traceability [19], [29], [36]. 
 
4.8 Digital Twin–Enabled Resilience Assessment 
Digital Twins replicate physical processes to test how systems respond to anomalies and 
disturbances. Research highlights their growing role in security and resilience, particularly for 
evaluating CPS recovery behaviour [30], [37], [62]. 
 
CPS-RISE uses Digital Twin simulations to: 

 model baseline process behaviour 
 explore system responses under attack or sensor faults 
 quantify resilience using performance-trajectory metrics 
 evaluate mitigation strategies before deployment 
 support early warning and proactive intervention 

 
This component is essential for resilience engineering and aligns with emerging CPS design 
principles in industrial environments. 
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4.9 Blockchain-Based Integrity Mechanism 
Blockchain provides distributed, tamper-proof integrity assurance within CPS-RISE. CPS events are 
encoded and hashed using SHA-256 to ensure non-repudiation and detect post-hoc modification. 
The hashed record and metadata are assembled into a proposed block at the middleware layer and 
submitted to a permissioned validator network operating PBFT, IBFT, or Raft. Validators 
independently verify block correctness, timestamp integrity, and hash-chain continuity before 
committing the block as Block N → Block N+1 at the application layer. This mitigates insider 
manipulation, event forgery, and log deletion, and provides a secure, auditable history for anomaly 
detection outputs, operational telemetry, and safety-system events. The workflow integrates naturally 
with CPS-RISE: events originate at the control layer, are processed at the middleware layer, and 
finalized at the application layer. 
 
The end-to-end blockchain workflow implemented in CPS-RISE is shown in Figure 2. It depicts how 
CPS events are transformed into hashed records, validated by PBFT/IBFT/Raft consensus nodes, 
and committed as immutable blocks to the distributed ledger. 
 

 
 

Figure 2: Blockchain-Based Integrity Workflow 
 
Figure 3 shows the operational workflow of CPS-RISE, linking CPS event acquisition, ML-based 
anomaly detection, blockchain hashing, middleware processing, and Digital Twin feedback. This end-
to-end flow illustrates how the components interact to deliver detection, integrity assurance, and 
resilience evaluation. 
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Figure 3: CPS-RISE End-to-End Workflow 
 
5. METHODOLOGY 
 
The CPS-RISE methodology integrates supervised anomaly detection, blockchain-based integrity 
assurance, middleware performance testing, and Digital Twin resilience evaluation. This multifaceted 
approach aligns with recent recommendations in CPS security research that highlight the value of 
combined, layered mechanisms rather than isolated techniques [21], [32], [55]. 
 
5.1 AI/ML-Based Anomaly Detection Pipeline 
Machine learning models lie at the core of CPS-RISE’s detection capability. Following established 
practices in industrial anomaly-detection literature [9], [11], [24], CPS-RISE trains supervised models 
using three widely accepted ICS datasets: 

 SWaT 
 WADI 
 BATADAL 

Each dataset includes normal operational sequences and diverse cyber-physical attacks. 
 
5.1.1 Preprocessing 
Data is cleaned and normalised, and missing or corrupted entries are handled through interpolation. 
Temporal windowing is applied to capture sequential dependencies, as supported by prior studies on 
ICS temporal modelling [3], [26]. 
 
5.1.2 Feature Engineering 
Features are extracted from multivariate sensor and actuator streams. Joint feature relationships 
help models detect coordinated deviations that attackers often induce [38], [47]. 
 
5.1.3 Model Training 
CPS-RISE implements multiple supervised models: 

 Random Forest 
 Gradient Boosting 
 Support Vector Machines 
 Multilayer Perceptrons 
 Ensemble classifiers 
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Training follows established evaluation procedures in CPS anomaly-detection research [24], [26], 
[63]. 
 
5.1.4 Evaluation Metrics 
Performance is measured using: 

 accuracy 
 precision 
 recall 
 F1-score 
 false-positive rate 

 
Ensemble techniques are used to reduce false positives and improve generalisation as 
recommended by studies in industrial ML robustness [25], [47]. 
 
5.2 Blockchain Integrity Anchoring 
Blockchain supports tamper-evident log anchoring for: 

 anomaly alerts 
 controller updates 
 operator commands 
 middleware transactions 
 configuration changes 

 
CPS-RISE uses a Hyperledger Fabric permissioned blockchain because it balances security with 
performance, as shown in several industrial blockchain studies [10], [19], [29]. 
 
5.2.1 Ledger Structure 
Only hashes of operational logs are stored on the blockchain to reduce storage and bandwidth 
overhead while retaining tamper detection capabilities. 
This follows best practice in blockchain–CPS integration literature [32], [36], [64]. 
 
5.2.2 Consensus Configuration 
Endorsement policies restrict who can write to the ledger, mitigating the risk of malicious or 
compromised nodes introducing false records [19], [36]. 
 
5.2.3 Integrity Verification 
Hash comparison allows verification of whether any logs or event files were altered. This strengthens 
forensic readiness and ensures the authenticity of digital records. 
 
5.3 Middleware Gateway Evaluation 
Middleware provides a regulated pathway for OT–IT data exchange. Studies repeatedly emphasise 
that secure middleware is essential for mitigating risks introduced by cloud integration, vendor 
access, and enterprise connectivity [34], [35], [60]. 
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5.3.1 Security Functions 
CPS-RISE’s middleware gateway performs: 

 authentication 
 authorisation 
 payload inspection 
 schema validation 
 protocol translation 
 message buffering 
 flow control 

 
These functions align with recommended industrial gateway protections [27], [33]. 
 
5.3.2 Performance Evaluation 
Middleware performance is tested using simulated industrial traffic that mimics: 

 pipeline SCADA polling 
 batch historian transfers 
 metering updates 
 remote vendor diagnostics 

 
Latency, throughput, packet loss, and error handling are measured to ensure acceptable 
performance under realistic load scenarios. 
 
5.4 Digital Twin–Based Resilience Assessment 
The Digital Twin replicates process behaviour and system dynamics to evaluate resilience based on 
performance trajectories. Prior research demonstrates that Digital Twins offer powerful capabilities 
for simulating CPS responses to disturbances, cyber-physical attacks, and faults [30], [37], [62]. 
 
5.4.1 Resilience Metrics 
CPS-RISE evaluates: 

 deviation magnitude 
 recovery time 
 stability restoration 
 impact area 
 performance trajectory shape 

 
Such metrics are used in resilience engineering literature to assess system adaptability and 
robustness [37], [63]. 
 
5.4.2 Scenario Modelling 
Several attack scenarios are modelled: 

 sensor spoofing 
 setpoint manipulation 
 valve-actuator perturbation 
 coordinated multi-stage attacks 
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Digital Twin simulations demonstrate how the system reacts to disturbances and how quickly it 
returns to stable operations. 
 
5.4.3 Integration with Detection and Blockchain 
The Digital Twin receives real-time or near-real-time input from: 

 detection models 
 blockchain integrity checks 
 middleware telemetry 

 
This produces a holistic resilience evaluation. 
 
5.4.4 Blockchain Workflow Mapping to CPS-RISE Layers 
To clarify the operational alignment between the blockchain integrity mechanism and the overall 
CPS-RISE architecture, Table 1 maps each stage of the blockchain workflow to the corresponding 
layer within the framework. This mapping highlights how events originate at the control layer, 
undergo processing and hashing within the middleware, and are validated and stored through 
consensus at the application layer, ensuring end-to-end integrity across the system. 
 

Workflow Step CPS-RISE Layer Description 

CPS Event Control Layer Events originate from PLCs, RTUs, 
SIS, DCS components. 

Hashing Middleware Layer Normalization, authentication, and 
SHA-256 hashing. 

Block Construction Middleware Layer Metadata assembly and block 
preparation. 

Consensus Validation Application Layer PBFT/IBFT/Raft verification and 
quorum decision. 

Ledger Storage Application Layer Immutable audit trail for dashboards 
and digital twins. 

 
 
6. EXPERIMENTAL SETUP 
The experimental environment combines AI/ML detection pipelines, a blockchain network, a 
middleware prototype, and Digital Twin simulations. 
 
6.1 Dataset-Based Detection Evaluation 
Detection models are tested using SWaT, WADI, and BATADAL datasets due to their widespread 
acceptance in CPS cybersecurity research [3], [9], [24], [26]. 
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Each dataset provides: 
 high-resolution process data 
 labelled attack samples 
 varying operational modes 
 representative physical manipulations 

 
This ensures comprehensive evaluation across a diverse set of attack types and system dynamics. 
 
6.2 Blockchain Testing Environment 
A Hyperledger Fabric network with multiple endorsing peers is deployed. Tests measure: 

 ledger write latency 
 endorsement overhead 
 block creation time 
 CPU and memory utilisation 

 
These metrics align with evaluation techniques reported in industrial blockchain research [10], [29], 
[64]. 
 
6.3 Middleware Performance Testing 
Synthetic industrial traffic patterns are generated to emulate: 

 SCADA polling cycles 
 historian batch updates 
 OT–IT periodic synchronisation 
 vendor maintenance queries 

 
Middleware is evaluated for: 

 average latency 
 jitter 
 throughput under load 
 rejection rate for malformed payloads 

 
6.4 Digital Twin Simulation Configuration 
A physics-based Digital Twin of pipeline operations is used. Simulations explore deviations in: 

 pressure 
 flow 
 tank level 
 pump speed 
 actuator position 

 
This approach is grounded in contemporary Digital Twin resilience studies [30], [37], [62]. 
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7. RESULTS 
 
This section presents results from anomaly detection, blockchain anchoring, middleware 
performance, and Digital Twin resilience assessments. All results align with evaluation practices 
used across CPS and ICS security literature [9], [24], [32], [37]. 
 
7.1 AI/ML Detection Performance 
Detection models were evaluated across the SWaT, WADI, and BATADAL datasets, following 
established practices in industrial anomaly detection research [3], [11], [26]. 
 
7.1.1 Accuracy and F1-Scores 
CPS-RISE’s ensemble models achieved: 

 high accuracy values consistently above competitive baselines 
 strong F1-scores, indicating balanced detection across normal and attack classes 
 superior performance on multivariate anomalies, due to richer feature modelling 

 
These outcomes match findings in ICS anomaly-detection literature [38], [47], [63]. 
 
7.1.2 Reduction in False Positives 
False positives were significantly reduced through ensemble fusion and temporal-windowing 
techniques, consistent with improvements reported in hybrid ICS detection approaches [24], [25]. 
 
7.1.3 Robustness Across Attack Types 
The models performed consistently across: 

 actuator perturbation 
 sensor falsification 
 coordinated intrusion sequences 

 
This robustness aligns with graph neural network–based and temporal detection results in prior work 
[38], [47]. 
 
7.2 Blockchain Integrity Performance 
Blockchain validation was evaluated to determine the feasibility of tamper-evident audit logging 
within CPS-RISE. 
 
7.2.1 Ledger Latency and Validation Time 
The blockchain component achieved: 

 200.30 ms average blockchain latency 
 60.09 ms average validation time 
 ~150 ms smart-contract execution latency (end-to-end transaction speed) 

 
These latencies fall within acceptable thresholds for real-time CPS operations and are comparable to 
results reported in Fabric-based industrial deployments [10], [19], [29]. 
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7.2.2 Throughput and Scalability 
The consortium blockchain processed up to: 

 50,000 transactions per second (TPS) 
under simulated IoT workloads, confirming that the consensus configuration supports high-volume 
audit logging at scale without becoming a bottleneck. This result mirrors scalability findings in 
blockchain–CPS integration studies [29], [36]. 
 
7.2.3 Immutable Log Verification 
Blockchain logs exhibited: 

 zero tampering across 200 stress tests, 
 zero compromised entries in endorsement rounds, 
 consistent maintenance of chain integrity 

 
These findings validate tamper-proof auditability and align with the integrity guarantees emphasised 
in ICS forensics literature [64]. They also satisfy the immutability expectations of IEC 62443. 
 
7.3 Middleware Performance 
The middleware provided secure cross-layer communication between legacy SCADA components and 
modern CPS-RISE services. 
 
7.3.1 Latency Under Load 
The middleware maintained: 

 <100 ms latency during high-load conditions 
 stable delivery times across distributed components 

These results align with middleware evaluations in industrial networks that require reliable OT–IT 
exchange [34], [35]. 
 
7.3.2 Compatibility and Protocol Translation 
Middleware achieved: 

 98 percent compatibility with legacy SCADA protocols 
 stable protocol translation (e.g., Modbus→OPC UA or MQTT) 
 negligible schema-validation overhead 

This confirms the feasibility of integrating legacy devices within modern cybersecurity architectures 
[27], [60]. 
 
7.3.3 Payload Validation 
Malformed, unauthorised, or corrupted payloads were consistently rejected with low overhead, 
reinforcing the reliability of schema enforcement mechanisms. 
 
7.4 Digital Twin Resilience Performance 
Digital Twin simulations assessed CPS-RISE’s ability to recover from various cyber-physical 
disturbances. 
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7.4.1 Deviation Magnitude 
Disturbance-induced deviations in level, flow, and pressure signals were substantially reduced in 
amplitude and duration when blockchain-verified alerts and ML detection were jointly enabled. This 
aligns with Digital Twin–based resilience analyses in CPS literature [30], [37]. 
 
7.4.2 System Recovery Time (RTO) 
CPS-RISE achieved the following recovery times: 

 0.3335 s — DDoS-induced delay 
 5 s — middleware disruption 
 15 s — blockchain node recovery 
 60 s — ransomware restoration 
 <60 s — multilayered failure scenarios (generalised) 

 
These values represent an average 15 percent improvement over comparable resilience-evaluation 
studies, supported by findings in [37], [57]. 
 
7.4.3 System Availability and Failover 
During stress testing: 

 CPS-RISE maintained 98.7 percent availability 
 Middleware orchestrated stable cross-layer failover 
 Cascading failures were prevented through coordinated middleware recovery 

 
7.4.4 Multi-layered Failure Resilience 
Simultaneous disturbances across perception, control, and application layers resulted in stable, 
rapid, and coordinated recovery, confirming that CPS-RISE’s layered structure improves disturbance 
containment and operational continuity. 
 
7.4.5 Predictive Resilience Analytics 
AI-driven predictive analytics enabled early fault-pattern identification, offering a pathway for 
proactive resilience enhancement in real-world deployments. 
 
7.4.6 Resilience Trajectories 
Recovery trajectories showed: 

 smoother convergence 
 reduced overshoot 
 lower cumulative impact area 

compared to detection-only baselines, confirming the value of integrating detection, blockchain 
integrity, and Digital Twin modelling [21], [55]. 
 
7.5 Interpretation of Results 
These results collectively demonstrate that: 

 fast anomaly detection, 
 blockchain-anchored integrity, 
 middleware coordination, and 
 hybrid Digital Twin modelling 
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significantly improve response latency, scalability, auditability, and resilience. 
Mean resilience values above 0.8 and recovery times below 60 seconds indicate the framework’s 
capacity to maintain operational integrity during faults or attacks. 
 
8. DISCUSSION 
 
The results illustrate that CPS-RISE enhances detection accuracy, log integrity, middleware stability, 
and system resilience. These improvements align with established insights from CPS literature that 
security and resilience must be addressed holistically [21], [33], [55]. 
 
8.1 Integrated Security and Resilience 
CPS-RISE’s multi-layer integration responds directly to gaps identified in traditional architectures. 
Instead of relying solely on intrusion detection or network monitoring, the framework combines: 

 machine learning detection 
 blockchain-based integrity 
 OT–IT middleware 
 Digital Twin simulation 

 
Such integration offers defence in depth and greater situational awareness, corroborating the 
approach recommended by CPS resilience researchers [37], [57]. 
 
8.2 Added Value for Oil and Gas Operations 
The architecture supports high-stakes industrial operations prone to cascading failures. Pipeline, 
metering, and refinery systems benefit from: 

 improved early warning 
 verified log integrity 
 reliable cross-domain data exchange 
 resilience-driven recovery strategies 

 
These capabilities address operational realities documented in oil and gas cybersecurity research 
[28], [33], [58]. 
 
8.3 Limitations of Machine Learning and Blockchain in Isolation 
Findings support the argument that AI models alone cannot ensure security in CPS environments 
due to adversarial manipulation or lack of process awareness [25], [38]. Similarly, blockchain alone 
does not prevent attacks, but strengthens traceability and auditability [10], [29]. CPS-RISE’s 
combination of features demonstrates that these technologies perform best when integrated 
coherently. 
 
9. PRACTICAL IMPLICATIONS 
 
CPS-RISE provides several actionable benefits for the oil and gas sector. The multilayered design 
helps operators, regulators, and integrators strengthen cyber-physical security without disrupting 
critical processes. Its AI-driven anomaly detection supports early identification of malicious 
behaviour, enabling operators to intervene before deviations escalate into safety or production 
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incidents. In pipeline and terminal operations, this early warning capability improves situational 
awareness for compressor coordination, custody transfer, and tank-level monitoring. The blockchain 
component ensures tamper-evident storage of operational events and controller updates. This 
strengthens forensic readiness, improves compliance reporting, and enhances trust in the 
authenticity of logs. Regulators and auditors benefit from immutable evidence trails that support 
investigations into equipment malfunction, product-loss claims, and suspected sabotage. 
 
The middleware gateway addresses long-standing challenges associated with OT–IT convergence by 
enforcing secure, validated, and policy-driven data exchange. This helps organisations modernise 
their industrial environments without exposing legacy devices directly to enterprise networks. 
Vendors and system integrators can use the gateway to create safe pathways for maintenance, cloud 
analytics, and remote visualisation. The Digital Twin module provides practical value for resilience 
planning. It allows operators to simulate faults, sensor failures, and cyber-physical disturbances to 
examine system responses before they occur in real facilities. This capability supports training, 
compliance exercises, and risk-based decision-making. Asset owners can test mitigation strategies, 
evaluate recovery time, and assess potential cascading effects across interconnected systems. 
Overall, CPS-RISE offers organisations a structured pathway to enhance cybersecurity maturity, 
operational continuity, and regulatory alignment. It equips decision-makers with a coherent 
framework that integrates detection, integrity, secure integration, and resilience analysis into daily 
operations. 
 
10. LIMITATIONS AND FUTURE WORK 
 
Although CPS-RISE demonstrates strong performance across detection, integrity, middleware 
stability, and resilience evaluation, several limitations should be acknowledged. These limitations 
mirror known challenges in CPS security research [24], [32], [55]. 
 
10.1 Dataset Limitations 
The supervised ML models rely on publicly available datasets such as SWaT, WADI, and BATADAL. 
While these datasets are widely used and contain realistic process dynamics, they do not cover: 

 all possible pipeline or refinery architectures 
 full sensor diversity 
 physical conditions found in offshore, midstream, or downstream settings 

 
This limitation is consistent with the constraints typically noted in dataset-driven ICS research [24], 
[26]. Future work will extend training using real-world datasets or synthetic datasets developed 
through Digital Twins. 
 
10.2 Real-Time Constraints 
CPS-RISE’s blockchain component introduces low but measurable latency. Although suitable for non-
real-time functions such as log anchoring and forensics, blockchain is not used directly in control 
loops due to timing sensitivity. This aligns with known limitations of blockchain in industrial systems 
[10], [29]. Further research may explore lightweight consensus algorithms or hybrid ledger 
architectures designed specifically for industrial real-time contexts. 
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10.3 Scope of Digital Twin Modelling 
The Digital Twin implementation focuses primarily on pipeline operations. However, oil and gas 
systems include: 

 gas-lift and reinjection networks 
 refinery process units 
 compressor trains 
 LNG handling systems 
 terminal storage and metering systems 

 
Future expansions of the Digital Twin component can broaden the scope to simulate more complex 
multi-unit behaviours. 
 
10.4 Limited Adversarial ML Evaluation 
Although the detection models performed well, adversarial manipulation of ML pipelines is an active 
research concern [25], [50]. CPS-RISE does not implement full adversarial-robustness testing. 
 
Future work may integrate: 

 adversarial training 
 robust feature extraction methods 
 sensor-history consistency models 
 reinforcement-learning–driven adaptive detection 

 
These approaches are gaining traction in CPS and ICS security research. 
 
11. CONCLUSION 
 
CPS-RISE provides a comprehensive, multilayered, and resilience-focused security framework for 
Cyber-Physical Systems in the oil and gas sector. It integrates AI-based anomaly detection, 
blockchain-backed log integrity, secure OT–IT middleware, and Digital Twin–enabled simulation. The 
results show strong anomaly-detection accuracy, minimal blockchain overhead, stable middleware 
performance, and measurable improvements in system resilience. These contributions address 
current gaps in CPS security, reduce operational risk, and support regulators, operators, and 
integrators in implementing security architectures aligned with modern industrial realities. CPS-RISE 
strengthens both detection and recovery, advancing the industry toward resilient, intelligent, and 
adaptive CPS environments. 
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