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ABSTRACT 
 
In recent years, Particle Swarm Optimization (PSO) has been integrated with machine learning 
algorithms, such as deep learning, to create powerful hybrid methods that can tackle complex 
optimization problems more effectively. In the domain of oil and gas reservoir management, 
underground pressure management is crucial to maximize the yield and efficiency of the 
reservoir. However, the heterogeneity of the reservoir, along with uncertainties in its properties, 
makes pressure management a complex and challenging task. To address this issue, 
researchers have proposed Physics-Informed Deep Learning (PIDL) techniques that incorporate 
domain-specific knowledge, such as the governing physical equations, into the deep learning 
framework. Particle Swarm Optimized-Physics-Informed Deep Learning (PSO-PIDL) is a novel 
hybrid approach that combines PSO with PIDL to optimize the pressure management of 
heterogeneous oil and gas underground reservoirs. In this approach, the PSO algorithm is used 
to find the optimal solution for the PIDL-based model that incorporates the governing physical 
equations of the reservoir. PSO-PIDL can effectively handle the uncertainties and heterogeneity 
of the reservoir, while also incorporating the physical constraints of the problem. Overall, PSO-
PIDL is a promising approach for optimizing the pressure management of oil and gas reservoirs. 
It can help reduce the operational costs and improve the efficiency of the reservoir, while also 
ensuring the sustainable use of natural resources. 
 
Keywords: Physics-Informed Deep Learning, Particle Swarm Optimization, Bidirectional                           

Long-Short-Term-Memory, Heterogeneous Reservoir, DuPont Finite Element Heat 
and Mass Transfer Code  

 
Proceedings Citation Format 
Barna Thomas Lass, Samson Isaac, Amina Isa, Zara Sakanau & Hamidatu Abdulkadir (2023): Particle Swamp Optimized -Physics-
Informed Deep Learning For Heterogeneous Oil And Gas Underground Reservoir Pressure Management. Proceedings of the 36th 
iSTEAMS Accra Bespoke Multidisciplinary Innovations Conference.  University of Ghana/Academic City University College, 
Accra, Ghana. 31st May – 2nd June, 2023. Pp 13-24 https://www.isteams.net/ghanabespoke2023 
dx.doi.org/10.22624/AIMS/ACCRABESPOKE2023P2 
 



 

14 
 

1. BACKGROUND TO THE STUDY 
 
Heterogeneous oil and gas underground reservoirs are complex systems that require careful 
management to maximize their production efficiency and ensure their sustainability. One of the 
most critical aspects of reservoir management is pressure management, which involves 
maintaining the reservoir pressure at an optimal level to facilitate the flow of oil or gas to the 
surface. The pressure of an underground reservoir is affected by various factors, including the 
geological properties of the reservoir, the rate of production, and the injection of fluids. 
Heterogeneity in the reservoir, such as variations in rock permeability, can make pressure 
management even more challenging. If the pressure is too low, it can lead to decreased 
production rates, while high pressure can damage the reservoir and cause irreversible depletion 
of the resources. Effective pressure management strategies require accurate and reliable 
reservoir modelling, which involves understanding the geological and fluid dynamics properties 
of the reservoir. Computer simulation models are used to represent the reservoir, and these 
models can be optimized to find the most efficient pressure management strategies 
 
In recent years, the use of advanced optimization techniques, such as machine learning 
algorithms, has shown promising results in optimizing pressure management in heterogeneous 
oil and gas underground reservoirs. These techniques incorporate the governing physical 
equations of the reservoir into the optimization process, ensuring that the optimization 
strategies comply with the physical constraints of the problem. Overall, the efficient 
management of heterogeneous oil and gas underground reservoirs is crucial for the sustainable 
production of natural resources. Pressure management is a critical component of this 
management process, and the use of advanced optimization techniques, such as machine 
learning algorithms, is a promising approach to improving the efficiency and sustainability of 
reservoir management. Particle Swarm Optimization (PSO) is a widely used optimization 
technique inspired by the social behaviour of animals, such as birds and fish. It has been applied 
to various domains, including engineering, finance, and natural resource management, to find 
the optimal solution for complex problems.  
 
1.1 Statement of Problem 
 
The efficient management of underground reservoirs is crucial for the oil industry, as it aims to 
maximize oil recovery while minimizing environmental impact and costs. However, the 
heterogeneous nature of these reservoirs presents challenges in accurately modelling and 
predicting fluid flow processes, making it difficult to develop effective pressure management 
strategies. To address this challenge, researchers have proposed the use of physics-informed 
deep learning (PIDL) with evolutionary optimization. PIDL involves integrating physical principles 
and equations into neural network design to improve accuracy and ensure compliance with the 
laws of physics. Meanwhile, evolutionary optimization generates and selects the best-
performing models to further enhance PIDL's performance. Previous studies have shown the 
efficacy of PIDL with evolutionary optimization in optimizing injection and production strategies 
in heterogeneous permeable reservoirs, leading to increased oil recovery.  
 
Al-Anazi et al.(2019) used PIDL with evolutionary optimization to optimize water injection rates 
in a heterogeneous carbonate reservoir. The authors found that the optimized strategy 
increased oil production and reduced water production, resulting in improved overall recovery. 
Despite these promising results, further research is needed to fully realize the potential of PIDL 
with evolutionary optimization for reservoir pressure management. Future research could focus 
on integrating additional physical principles and data sources into PIDL models, exploring the 
use of PIDL for other aspects of reservoir management, and addressing challenges related to 
data quality and availability. Wu et al. (2021) used PIDL with evolutionary optimization to 
optimize the injection and production strategies for a synthetic reservoir with heterogeneous 
permeability.  
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The authors found that the optimized strategies resulted in a 14% increase in oil recovery 
compared to non-optimized strategies. Furthermore, optimization of water injection rates in a 
heterogeneous carbonate reservoir resulted in improved overall recovery with reduced water 
production. Despite these promising results, further research is necessary to fully realize the 
potential of PIDL with optimization techniques such as PSO for reservoir pressure management. 
Future research could focus on incorporating additional physical principles and data sources, 
exploring its use in other aspects of reservoir management, and addressing challenges related 
to data quality and availability. Overall, PIDL with Particle Swamp Optimization shows promise 
in improving reservoir pressure management strategies, providing a pathway for efficient and 
sustainable oil recovery while minimizing environmental impact and costs. 
 
2. LITERATURE REVIEW 
 
There has been a growing interest in the application of physics-informed deep learning (PIDL) 
with optimization algorithms for improving reservoir management strategies in the oil industry. 
Several recent studies have investigated the potential of these methods for optimizing injection 
and production strategies in heterogeneous underground reservoirs. 
 
Liu et al. (2019), proposed a PIDL model for optimizing injection rates in a heterogeneous 
reservoir. The model was trained using historical production data and the solution of the Laplace 
equation, which describes fluid flow in porous media. The results showed that the optimized 
injection rates led to a significant increase in oil recovery. 
 
Fuks (2020) developed a stochastic model to account for the subsurface flow's heterogeneity 
and uncertainty. The proposed method was shown to reduce uncertainty propagation 
significantly compared to traditional Monte Carlo methods. However, the study only focused on 
uncertainty propagation for multiphase transport in porous media. 
 
Shahverdi et al. (2020), proposed a PIDL model for optimizing well placement in a fractured 
reservoir. The model was trained using a combination of synthetic data and data from a real-
world reservoir. The results showed that the optimized well placement led to a significant 
increase in oil recovery and a reduction in operating costs. 
 
Al-Mutairi et al. (2021), developed a PIDL model for optimizing the injection and production rates 
in a dual-porosity reservoir. The model was trained using data from a real-world reservoir and 
the results showed that the optimized rates led to a significant increase in oil recovery and a 
reduction in water production. 
 
Harp et al. (2021) conducted a comprehensive study on the feasibility of using physics-informed 
machine learning for underground reservoir pressure management. They provided a detailed 
analysis of the limitations and challenges and suggested potential solutions. Nonetheless, the 
study only focused on underground reservoir pressure management. 
 
Lv et al. (2021) proposed a novel workflow based on physics-informed machine learning to 
determine the permeability profile of fractured coal seams using downhole geophysical logs. 
They demonstrated the effectiveness of the proposed approach using field data. However, the 
study only considered determining the permeability profile of fractured coal seams using 
downhole geophysical logs. 
 
Wu et al. (2021) conducted a study of multi-phase flow dynamics during CO2 sequestration, 
which was accelerated with machine learning simulation methods combined with physics. They 
identified the most significant factors that affect CO2 migration and storage in geological 
formations. Their results demonstrated that their approach can reduce simulation time 
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significantly. However, the study only considered multi-phase flow dynamics during CO2 
sequestration. 
 
Pachalieva et al. (2022) introduced a novel approach for managing underground reservoir 
pressure using physics-informed machine learning with differentiable programming. Their 
experimental results demonstrated the effectiveness of the proposed approach in managing 
heterogeneous underground reservoirs. However, the study is limited to this specific application. 
 
Wang et al. (2022) designed a PIDL model for optimizing the injection and production rates in a 
heterogeneous reservoir with uncertain permeability. The model was trained using data from a 
real-world reservoir and the results showed that the optimized rates led to a significant increase 
in oil recovery and a reduction in the uncertainty associated with reservoir modelling. 
 
Yan et al. (2022) proposed an approach to improve deep learning performance for predicting 
large-scale geological sequestration modelling through feature coarsening. They used a family 
of physics-informed neural network (PINN) models to predict the CO2 plume's shape during 
geological carbon sequestration. The result showed that the approach is more accurate and 
computationally efficient than traditional simulation methods. However, the study only focused 
on predicting CO2 plume shape during geological carbon sequestration. 
 
Yan et al. (2022a) proposed a physics-informed machine learning approach for reservoir 
management of enhanced geothermal systems. The study provided a detailed experimental 
setup and demonstrated the effectiveness of the proposed approach. However, the study only 
considered this specific application. 
 
Yan et al. (2022b) proposed a gradient-based deep neural network model for simulating 
multiphase flow in porous media. The experimental results demonstrated the effectiveness of 
the proposed approach in several benchmark test cases. Nevertheless, the study only focused 
on simulating multiphase flow in porous media. 
 
Yan et al. (2022c) proposed a physics-constrained deep learning model for simulating 
multiphase flow in 3D heterogeneous porous media. The study demonstrated the effectiveness 
of the proposed approach using several benchmark test cases. However, the study only focused 
on simulating multiphase flow in 3D heterogeneous porous media. 
 
Tariq et al. (2023) proposed a physics-informed surrogate model for predicting dynamic 
temporal and spatial variations during CO2 injection into deep saline aquifers. The work 
demonstrated the effectiveness of the proposed approach using field data.  
 
Tariq et al. (2023a) proposed a deep-learning-based surrogate model to predict CO2 saturation 
front in highly heterogeneous naturally fractured reservoirs using a discrete fracture network 
approach. The work demonstrated the effectiveness of the proposed approach using several 
benchmark test cases. Nonetheless, both studies only focused on predicting CO2 behaviour in 
specific types of formations. 
 
Wang and Chen (2023) provided an overview of the current developments and future trends of 
machine learning applications in reservoir engineering. The study discussed three main areas 
where machine learning has been employed: reservoir characterization, reservoir modelling. 
 
Yan et al. (2023) presented a new method for reservoir modelling and optimization using deep 
learning, specifically for enhanced geothermal systems. The study demonstrates the 
effectiveness of the proposed approach through numerical simulations and case studies. The 
study highlights the potential benefits of this method for renewable energy. However, the work 
does not provide a comparison with existing methods, limiting the determination of superiority. 



 

17 
 

The focus solely on EGS also limits the generalizability of the findings. The study does not discuss 
the limitations of deep learning techniques, such as their high computational requirements and 
the need for large amounts of data, which may pose challenges for real-world implementation. 
 
Paper by Sen et al. (2021) proposes a machine learning-based approach for optimizing oil 
reservoir production rates under geological uncertainty. The methodology combines supervised 
and unsupervised learning techniques to estimate production rates and identify optimal well 
locations, and the paper includes case studies to demonstrate its effectiveness. However, the 
paper does not compare the proposed approach with existing methods and does not discuss 
the challenges associated with real-world implementation. The study solely focuses on 
production rate optimization and does not address other important issues in reservoir 
engineering, such as reservoir characterization and modelling. The paper provides a promising 
direction for future research in machine learning-based reservoir optimization, but further 
validation and comparison with existing methods are needed. 
 
Overall, these studies demonstrate the potential of PIDL with optimization for improving 
reservoir management strategies in the oil industry. However, there are still challenges related 
to data quality and availability, as well as computational resources required for training and 
deploying the models. Therefore, further research is needed to address these challenges and to 
provide insights into the best practices for using PIDL with Particle Swamp optimization for 
reservoir management. 
 
3. METHODOLOGY 
 
To minimize the risks of leakage and induced seismicity and to enhance reservoir performance, 
operators of underground reservoirs require pressure management systems that can maximize 
net fluid pumped. However, real-time uncertainty quantification cannot be achieved using full-
order physics models, which are traditionally used. While existing alternatives, such as the 
homogeneous model used by Harp et al. (2021), are available, they do not account for 
heterogeneity, which is a crucial aspect of subsurface modelling. It is critical to incorporate an 
extensive physics model into the machine learning workflow by integrating PSO to optimize the 
model and consider heterogeneity in multi-phase injection situations, such as CO2 
sequestration. Furthermore, creating real-time uncertainty quantification (UQ) would be 
challenging without the PIML framework since it would require solving numerous partial 
differential equation-constrained optimization problems. Therefore, an accurate model should 
consider heterogeneity. Our PIML framework combines a comprehensive physics model with 
machine learning and dynamic programming to enable practical and computational feasibility 
of this approach. 
 
To manage underground reservoir pressure in the oil industry, a proposed methodology for 
physics-informed deep learning (PIDL) with evolutionary optimization includes the following 
steps: 

i. Collect and pre-process historical data on reservoir pressure, production rates, 
and injection rates from the target reservoir to ensure accuracy and 
completeness. 

ii. Develop a PIDL model based on physics equations for fluid flow in porous media, 
incorporating a BiLSTM to learn complex relationships between input and output 
variables, and train the model using the pre-processed data. 

iii. Use Particle Swamp Optimization (PSO) to optimize injection and production 
rates by simulating reservoir behaviour under different scenarios using the PIDL 
model to maximize oil recovery and minimize operating costs. 
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iv. Validate the optimized injection and production rates with target reservoir data 
and compare them to historical operating conditions to assess the accuracy and 
effectiveness of the PIDL model and PSO optimization. 

v. Conduct sensitivity analysis to evaluate the impact of uncertainties and variations in 
reservoir properties on optimized injection and production rates, identify influential 
parameters, and assess optimized rates' robustness. 

vi. Evaluate optimized injection and production rates' environmental and economic impact 
by assessing reduction in greenhouse gas emissions and increase in net present value 
and reduction in operating costs. 

vii. Deploy the PIDL model and optimized injection and production rates for real-time 
reservoir management by continuously updating the model with the latest data and 
adjusting optimized rates for optimal reservoir management. 

 
Overall, this methodology integrates physics-based modelling, deep learning, and PSO 
optimization to provide a comprehensive and effective approach for reservoir management in 
the oil industry. 
 

 
Figure 1: Architecture of the Proposed System 

 
In order to maintain pressure at a crucial site in a reservoir with a heterogeneous permeability 
field, we can determine the fluid extraction rates at an extraction well using the suggested PIML 
framework, which is schematically shown in Figure 1. The extraction rate, which is utilized as 
input along with the permeability field in the full-physics DuPont Finite Element Heat and Mass 
Transfer Code (DPFEHM) model, is predicted by the Bidirectional Long Short Term Memory 
model (BiLSTM) optimised using the PSO algorithm, which is trained on a set of permeability 
fields. The physics constraints necessary for the training process are implemented using the 
DPFEHM framework, which supplies the physics information in our PIML framework, and the 
BiLSTM is trained to determine extraction rates for a heterogeneous permeability field. Our 
strategy is comparable to the writings of Srinivasan et al.(2021); Isaac et al.(2023) and Harp et 
al.(2021). Using a single-phase model featuring heterogeneous permeability fields, we 
conducted multiple training scenarios through random generation using a Gaussian distribution 
function. Given the model's numerous parameters, computing finite-difference gradients is 
infeasible, and the only viable solution is reverse-mode automatic differentiation. We conducted 
a hyper-parameter search by varying the learning rate (i.e., the step size that controls the rate 
at which each iteration moves towards the minimum of the loss function) and batch size (i.e., 
the number of training samples included in each gradient calculation). In a subsurface reservoir 
with heterogeneous permeability fields, the movement of a single-phase fluid induces pressure 
changes that need to be considered.  
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To describe these reservoirs, we employ the equation provided below,  
 

∇. (𝐾(𝑥) . ∇ℎ) = 𝑓           (1)                                                                                                          
 
in which k(x) represents the location-dependent permeability fields, h refers to the pressure 
head, and f denotes the injection/extraction rate. This is the equation used to represent the 
movement of a single-phase fluid through a subsurface reservoir with heterogeneous 
permeability fields. In the equation, ∇ is the gradient operator, K(x) is the permeability fields that 
change with location x, h is the pressure head, and f is the injection or extraction rate. The left 
side of the equation represents the flow of the fluid, while the right side represents the sources 
and sinks of the fluid. The equation is solved using the two-point flux finite volume approximation 
and DPFEHM. By utilizing this steady-state equation, we can evaluate the prolonged impact of 
injection and extraction on the pressure head. The well-established two-point flux finite volume 
approximation and DPFEHM enable us to solve this equation effectively. DPFEHM's integrated 
AD ensures a seamless transition between the physics and machine learning models. 
 
In order to maintain desired pressure levels during fluid injection, the Physics-Informed Machine 
Learning (PIML) framework, shown in Figure 1, uses a BiLSTM and PSO to estimate extraction 
rates at particular wells, particularly in regions close to faults with a high seismic risk or in 
abandoned wells with leakage potential. Heterogeneous permeability fields are generated at 
random using a Gaussian distribution function to increase the model's realism. 
 
To enhance the precision of the model, the PIML workflow can be combined with Particle Swarm 
Optimization (PSO). The following are the steps in the PIML-PSO workflow: 

i. Create a training dataset with Nb batches and Ns samples per batch, using 
heterogeneous permeability samples that are randomly initialized with a Gaussian 
distribution function. 

ii. Develop a BiLSTM that consists of an input layer to accept a permeability field and an 
output layer to estimate the fluid extraction rates at the extraction well. 

iii. Define an objective function to compute the loss function, which evaluates the error 
between the model's overpressure and the target overpressure at a critical location. 

iv. Apply PSO to minimize the objective function by adjusting the BiLSTM model parameters, 
so as to achieve the optimal solution. 

v. Train the BiLSTM with the optimal solution to identify the extraction rates that minimize 
the error between the model's overpressure and the target overpressure at a critical 
location. 

 
The second step of the PIML process involves training a BiLSTM to predict the necessary 
extraction rates at a specific extraction well for maintaining pressure at critical locations during 
fluid injection. BiLSTM is a type of neural network consisting of two LSTM layers, one processing 
input sequence in a forward direction and the other in reverse, allowing it to capture both past 
and future contexts. However, this study employs a modified version of the BiLSTM architecture 
integrated with PSO. In the third step of the PIML framework, the loss function is established by 
computing the sum of squared errors between the predicted overpressure by the model and the 
desired overpressure at a crucial location. 
 

           𝐿(𝜃) = ∑ ∑ ∆ℎ 𝑄 𝜃, 𝑘 (𝑥) , 𝑘 (𝑥) − ∆ℎ          (2)                              

 
Nb denotes the number of batches, Ns represents the number of samples per batch, and htarget 
signifies the target overpressure. The predicted overpressure h is determined by the injection 
rate QNN and the permeability kj(x) at a specific location. To calculate QNN, the BiLSTM-PSO 
model is utilized, which is dependent on two parameters: θ, the model parameters, and kj(x), 
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the permeability. The equation to calculate QNN using the BiLSTM-PSO model with parameters 
θ and kj(x) is: 
 

𝑄𝑁𝑁 = 𝑓 𝜃, 𝑘 (𝑥)   (3) 
 

The loss function is used to compute the root-mean-square error (RMSE). 
 

𝑅𝑀𝑆𝐸 =
( )

   (4) 

 
In the fourth step in step 4, the BiLSTM-PSO is trained with Adam to minimize the loss function 
L(θ) as 
 
𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐿(𝜃)  (5) 
 
where θ* represents the optimal value of the model parameters that minimizes the loss function 
L(θ), and argmin is the argument that minimizes the function. The BiLSTM-PSO algorithm is used 
to search for the optimal value of θ that minimizes the loss function. The algorithm iteratively 
adjusts the values of θ to minimize loss. Reverse-mode AD is a type of Differential Programming 
that simplifies the computation of complex derivatives using the chain rule. In computational 
fluid dynamics, using finite differences or numerical differentiation to compute gradients can be 
costly. Instead, DP and reverse-mode AD can accurately calculate complex derivatives. When 
there are many input parameters and few output parameters, reverse-mode AD is more 
effective. 
 
4. DISCUSSION OF FINDINGS AND RESULTS 
 
An injection well, an extraction well, and a critical site are all included in the physics model. The 
initialization of the permeability field is random, and water is injected at a predetermined pace. 
The permeability field is used by the PIML framework to train the neural network to achieve a 
target overpressure at the crucial point. The background reservoir pressure in the simulation is 
set to match that of the 1791-meter-deep MPC 26-5 well in Kemper County, Mississippi, using 
a steady-state equation to account for the long-term effects of injection and extraction.  
 

 
 

Figure 2: Showing the Location of the Extraction, Injection and Critical location of the well. 
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According to Figure 2, the PIML algorithm utilized different batch sizes ranging from 64 to 256 
during the training and testing phases in order to generate multiple datasets and reduce 
overfitting. At each epoch, testing and training data were generated using a DP method for each 
sample. The algorithm was executed for 1000 epochs. The training data consisted of 1,000 
unique training examples randomly initialized using a Multivariate Gaussian distribution. A batch 
size of 256 was utilized, and the computations were performed using an Intel Core i7 CPU. 
 

 
 

Figure 3: The training plot showing RMSE and the Loss and the iterations 
 
Figure 3 shows a significant initial decrease in RMSE during training, followed by a slower 
reduction and plateau after approximately 1000 epochs, resulting in an overall 99% reduction 
in error with a minimum RMSE of 0.02. Uncertainty surrounding heterogeneity may affect the 
decision-making process for the extraction rate, but the model can predict multiple extraction 
rates for different permeability fields to help determine an appropriate extraction rate in 
uncertain situations. 
 

 
 

Figure 4: The Forecast and observed values 
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The over pressure limit of less than 0.02 MPa was reached which is close to that actual result 
in practice at 400 samples as shown in Figure in figure 4. 
 

 
 

Figure 5: Showing the distributions of the Over pressure (MPa) and the extraction rate(m3/s). 
 

According to Figure 5, as the number of samples increased, the overpressure also increased 
and reached its highest point at around 0.02 MPa and -0.14 m3/s when 800 samples were 
used. 
 
Table 1: Performance Comparison of various algorithms 

  LSTM-DP BiLSTM-DP BiLSTM/PSO with DP 

epoch 1000 1000 1000 

RMSE 0.032 0.027 0.019 
 
In Table 1, we can see the results of different algorithms trained for 1000 epochs. The LSTM-
DP model, which uses Long Short Term Memory with Differential Programming, had a root mean 
squared error (RMSE) of 0.032. The Bi-directional Long Short Term Memory with Differential 
Programming (Bi-LSTM-DP) model obtained an RMSE of 0.027. The BiLSTM-PSO model had the 
lowest RMSE value of 0.019. 
 
5. CONCLUSION  
 
The study used a PIML approach to tackle subsurface pressure management issues arising from 
fluid injection and extraction. The approach accounted for heterogeneity in fluid flow and 
evaluated the long-term impact on the reservoir. A Hybrid BiLSTM and PSO model trained in the 
PIML framework determined fluid extraction rates at a critical reservoir location during injection. 
The results showed the effectiveness of the PIML framework in managing reservoir pressures 
with heterogeneous permeability fields, resulting in minor deviations from the target 
overpressure. The DPFEHM framework was integrated into the PIML approach, bridging the gap 
between numerical models and machine learning techniques. 
 
6. CONTRIBUTIONS TO KNOWLEDGE  
 
In summary, the research problem addressed in this paper is the need for improved reservoir 
pressure management strategies that consider the complex physical processes governing fluid 
flow in heterogeneous underground reservoirs. The use of PIDL with Particle Swamp 
Optimization shows promise for addressing this challenge, and further research is needed to 
fully realize its potential. 
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