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ABSTRACT 
 

Polyp segmentation is a critical task in medical imaging, specifically in colonoscopy. Colonoscopy is a 
widely used diagnostic procedure for detecting and removing polyps in the colon. In order to identify 
polyps that pose a major threat to human life by growing into colorectal cancer, accurate polyp 
segmentation from colonoscopy images can give crucial information. Since polyps come in different 
shapes and sizes, existing biomedical image segmentation architectures often suffer from under or 
over-segmentation issues when used for polyp segmentation. Additionally, low-level features in the 
encoder block are frequently fused with high-level features in the decoder block, which results in 
feature mismatch problems in existing polyp segmentation models. To address these challenges, this 
work proposes MultiResUNET with depthwise convolutions. A deep learning architecture that combines 
Residual U-Net and depthwise convolutional layers for accurate polyp segmentation from colonoscopy 
images. The architecture's multi-resolution feature extraction and depthwise convolution pathways 
allowed the model to effectively handle complex structures and variations in polyps’ shapes and sizes. 
The proposed architecture captured polyp features using multi-resolution blocks consisting of three 
parallel convolutional blocks with different kernel sizes, which are then concatenated along the 
channel axis to form a fused feature map. Depthwise convolution is then used in the skip connections 
to capture quality contextual information while reducing the computational cost. Experiments on the 
benchmark dataset showed that the model outperformed existing methods and achieved 0.9638 
mIOU and 0.9815 dice score on the Kvasir-SEG dataset.  
 
Keywords: Polyp, Colonoscopy Convolution, Depthwise,  MultiResUNet 
 
Aims Research Journal Reference Format:  
Akingbesote, A.O. (2023): Polyp Segmentation from Colonoscopy images using MultiResUNet with Depthwise Convolutions. 
Advances in Multidisciplinary and Scientific Research Journal Vol.  9. No. 3. Pp 9–20 
www.isteams.net/aimsjournal. dx.doi.org/10.22624/AIMS/V9N3P2 

 
 
INTRODUCTION 
 
Polyp segmentation is a critical task in medical imaging, specifically in colonoscopy. Colonoscopy is a 
widely used diagnostic procedure for detecting and removing polyps in the colon. The third most 
prevalent cancer type overall for both men and women is colorectal cancer [1], and accurate 
segmentation of polyps is crucial for the timely identification and treatment of potentially cancerous 
growths [2].  
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On the other hand, artificial intelligence and image segmentation have shown to be useful in 
segmenting colorectal polyps, and this may help endoscopists to detect polyps that may otherwise be 
overlooked [3]. Detection of colorectal polyps and endoscopic tools may also play a role in developing 
robotic-assisted surgical systems [4]. 
 
In order to identify polyps that pose a major threat to human life by growing into colorectal cancer, 
accurate polyp segmentation from colonoscopy images can give crucial information. Early polyp 
segmentation techniques depended on manually extracted features, which were unable to adequately 
capture the information necessary for polyp segmentation. Recent studies have demonstrated the 
effectiveness of deep convolutional neural networks in identifying numerous illnesses. For instance, 
U-Net [5] was one of the first successful CNNs applied in medical imaging. The architecture uses an 
encoder-decoder architecture, combining low-level encoder branch features with high-level decoder 
branch features. U-Net have received significant attention for segmentation tasks due to the 
extraordinary abilities in utilizing multi-level features that help to reconstruct high-resolution feature 
maps, and it is based on the upsampling of feature maps concatenated with feature maps skipped 
from the encoder [5]. Based on this, several segmentation architectures have been proposed for polyp 
segmentation from colonoscopy, as seen in [6], [7], and [8], among many others.  
 
In the work of Debesh et al. [9], based on channel attention, the squeeze-and-excitation block and 
Atrous Spatial Pyramidal Pooling (ASPP) were combined in the ResUNet++ model. In Kim et al. [10], 
the authors introduced the UACA-Net design, which is based on U-Net but includes additional encoder 
and decoder modules. Foreground, background, and uncertain region maps are calculated for each 
representation using saliency maps computed by a prediction module in the UACA-Net. With the 
development of deep learning in medical image analysis, polyp segmentation has achieved promising 
progress.  
 
These deep learning-based solutions are designed to automatically predict segmentation maps for 
colonoscopy images, thereby assisting clinicians in performing the procedure. However, existing polyp 
segmentation models often suffer from feature mismatch issues, which can be attributed to the low-
level features of the encoder being fused with the high-level features of the decoder blocks. This 
feature mismatch issue directly affects polyp segmentation architectures' segmentation and 
generalization performance. To contribute, this work proposes MultiResUNet with depthwise 
convolutions (MultiResUNet-DC). A novel deep learning architecture that combines Residual U-Net and 
depthwise convolutional layers for accurate polyp segmentation.  
 
Specifically, the main contributions of this work can be summarized in three folds: 

i. Firstly, the MultiRes block, which uses concatenated feature maps derived from 
convolution blocks of various filter sizes, is used to collect multi-scale information. 

ii. Secondly, residual pathways are added with skip connections to encourage improved 
feature representation. These pathways incorporate both depthwise convolution blocks for 
precise localization of segmented features. 

iii. Lastly, experiments on a publicly available dataset in Kvasir-SEG show that the proposed 
model outperformed the existing polyp segmentation architectures. 
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The remainder of this paper is organized as follows: Section II presents the existing related works, 
Section III presents the research methodology, Section IV presents the results with detailed 
discussions, and Section V concludes. 
 
2. RELATED WORKS 
 
Polyp segmentation from colonoscopy images is a critical task in the field of medical image analysis. 
It aims to assist clinicians in the early detection and diagnosis of colorectal cancer [1]. With the 
increasing prevalence of colorectal diseases, accurate and efficient polyp segmentation techniques 
have gained significant attention in recent years [11]. For clinical monitoring and surgical operations, 
polyp segmentation offers an accurate polyp border, which is of great importance. For precise and 
automated polyp segmentation, researchers have created effective techniques during the past two 
decades [12]. Generally, biomedical images segmentation approach can be classified into 
handcrafted methods and the ones based on deep learning, which are automatic [13]. The traditional 
methods mainly exploit handcrafted features to train a classifier to extract polyp regions from 
colonoscopy images [14][15][16]. However, deep learning approach automatically extracts feature 
and ignores the handcrafted method to achieve better results [17]. 
 
The most popular network for medical image segmentation is U-Net [5], which has an encoder-decoder 
design and has taken over as the standard network. As was already noted, the original U-shaped 
encoder-decoder architecture had significant drawbacks. Yamada et al.[18] used a two-stage model 
for segmentation. The architecture combines the strengths of Faster R-CNN. However, while the two-
stage approach enhances segmentation accuracy, it introduces increased complexity and 
computational overhead. However, the need for separate U-Net and Mask R-CNN components hinders 
real-time applications and deployment on resource-constrained devices.  
 
In HardDNet-MSEG [6], a receptive field block is proposed to capture more global context information, 
and experiments showed that the model had increased segmentation performance. However, the 
inclusion of the receptive field came at a higher computational cost. In PraNet [19], a parallel partial 
decoder is added to the bottom of the encoder to generate a global map, and reverse attention was 
used to account for the connection between polyp border cues and polyp areas, which sharpened the 
polyp boundary. However, since polyps come in different shapes and sizes, sharpening the polyp 
boundary can lead to over segmentation in the architecture, as evident in the visualization results 
presented in the work. 
 
In Zhao et al. [20], In order to segregate polyps from colonoscopy pictures, MSNet architecture was 
presented. By pyramidally concatenating many subtraction units, they increased the representation of 
multi-scale features by combining lower-order and higher-order cross-level complementary information 
with level-specific information. However, the quality of features learnt from the benchmark dataset 
was low. The spatial-channel Attention Gate (scAG) was proposed by Khanh et al. [21] and included to 
the U-Net for the purpose of segmenting diseased tissues. By including contextual information into the 
encoder's low-level features, the scAG can direct the network model to concentrate more on the 
specific details of the key areas, narrowing the semantic gap between encoder and decoder features.  
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A local context attention module is used in ASCNet [22] to direct the network's attention to the more 
complicated and uncertain areas for prediction refining. Through dynamic receptive field update, Ji et 
al., [23] demonstrated gradually regulated self-attention. On the benchmark dataset, better 
segmentation performance was attained thanks to the network's utilisation of both spatial and 
temporal cues. However, the model had high computational cost. In Ige et al. [13], ConvSegNet was 
proposed, which used a context feature refinement module designed using progressively increasing 
kernels. Experiments on the benchmark datasets showed that the model had improved performance 
on the benchmark datasets. However, the rate at which the model segmented and processed 
individual frames of polyp image sequence was low.  
 
Generally, different levels of features in the encoder block have different characteristics, which are 
often low-level. Also, fusing the low-level features with the high-level features of the decoder block 
often leads to feature mismatch. The feature mismatch issue directly affects the segmentation and 
generalization performance of polyp segmentation architectures. Existing systems that have 
attempted to solve this often propose attention mechanisms and other modules. However, such 
modules often come with increased computational cost. To contribute, this research proposes 
MultiResUNet-DC which uses MultiRes block to capture multi-scale information by utilizing 
concatenated feature maps obtained from convolution blocks of varying filter sizes, to improve the 
model’s ability to handle diverse polyp sizes and shapes. A more detailed discussion on the proposed 
architecture is presented in the following section. 
 
3. METHODOLOGY 
 
The MultiResUNET architecture is designed with a focus on accurate segmentation while efficiently 
handling variations in polyp shapes and sizes. The concept behind a residual block is rooted in the 
idea of learning residual functions. A collection of transformations are used to produce the output in 
a typical neural network layer such as convolution, activation function, etc. from the input. The network 
learns residual mapping rather than the direct mapping from input to output in a residual block. This 
means that the network aims to learn the difference between the input and the desired output, which 
is often easier to learn than the entire mapping. For a residual block given an input 𝑥, the output 𝑦 is 
computed as: 
 
𝑦 = 𝐹(𝑥) + 𝑥        (1) 
 
Where 𝐹(𝑥) is the transformation applied to the input 𝑥 to model the residual, + operation is the 
elementwise addition, and 𝑥 is the original input. The architecture of the residual block is presented 
in Fig. 1. 
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Fig. 1. Residual Block 

 
In the proposed model, we begin by introducing the depthwise convolution block. In a depthwise 
convolution, each input channel is convolved separately with its corresponding filter. This means that 
each channel's information is processed independently. The building block in the proposed 
MultiResUNet-DC employs DepthwiseConv2D layers, followed by batch normalization and a Rectified 
Linear Unit (ReLU) activation function. This block is used to enhance feature extraction within the 
network. The convolution block employs standard Conv2D layers instead of depthwise convolutions. 
Similar to the depthwise convolution block, it includes batch normalization and ReLU activation, 
contributing to feature enrichment, and it is given as: 
 
𝑓(𝑥) = max(0, 𝐼௫)     (2) 
 
To encourage information flow and improve feature representation, we introduce residual pathways 
within the network. These pathways incorporate both depthwise convolution blocks and convolution 
blocks to capture and integrate distinctive features from different layers. The MultiRes block, a key 
component of the architecture, is designed to capture multi-scale information. It utilizes concatenated 
feature maps obtained from convolution blocks of varying filter sizes. Batch normalization is applied 
to enhance the stability of the concatenated features. This block contributes to the network's ability to 
handle diverse polyp sizes and shapes. Then, the encoder employs the MultiRes block and a 
combination of depthwise convolutional and max-pooling layers to capture and downsample feature 
information, while the decoder block uses Conv2DTranspose layers for upsampling and integrates skip 
connections to enable precise localization of segmented features. The architecture of the proposed 
MultiResUNet-DC model is presented in  
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Fig. 2. 

 
 

Fig. 2. Architecture of the Proposed MultiResUNet-DC 
 
The MultiResUNET-DC architecture is constructed by sequentially connecting encoder and decoder 
blocks. The encoder starts with the input layer and progressively downsamples the feature maps. The 
decoder, in turn, takes these feature maps and performs upsampling while integrating skip 
connections from the residual block. 
 
4. RESULTS 
 
This section presents the dataset used for model evaluation, the performance metrics, the results of 
experiments on the proposed MultiResUNet-DC architecture, and the discussions. The model was 
implemented using Python 3.9, Tensorflow 2.9 on a workstation equipped with NVIDIA GeForce RTX 
3050Ti, CUDA version 12.1 and 4GB GPU. 
 
4.1 Dataset 
One thousand (1000) polyp images, their corresponding masks, and bounding box data were captured 
by electromagnetic imaging equipment and are included in Kvasir-SEG dataset [24]. The bounding box 
data may be utilized for detection, while the images and their ground truths can be used for 
segmentation. The resolution of the images in this collection varies from 332 x 487 to 1920 x 1072 
pixels. Samples of the images and the annotated masks from this dataset are shown in  
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Fig. 3. 

 
 

Fig. 3: Sample Images and masks in the Kvasir-SEG dataset 
 
4.2 Performance Metrics 
Five (5) common metrics are utilized to assess the performance of the proposed MultiResUNet-DC 
model in comparison to the existing approaches. We took into account Jaccard, Dice score, Recall, 
Precision, and F2-Measure.The Jaccard similarity index (IoU) is the ratio of the overlapping area 
between the predicted and ground truth to the area of union between the predicted and ground truth 
segmentation.  
 
It is calculated as shown in equation 1, and the Dice Score measures the boundary matching between 
predicted and ground truth segmentation, as shown in equation 4. 
 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 =
்௉

்௉ାி௉ାிே
 (3) 

 

𝐷𝑆𝐶 =
ଶ×்௉

ଶ×்௉ାிே
                                        (4) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்௉

்௉ାி௉
                                         (5) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
்௉

்௉ାிே
                                        (6) 

 

𝐹2௠௘௔௦௨௥௘ =
ହ×௉௥௘௖௜௦௜௢௡×ோ௘௖௔௟௟

ସ×௉௥௘௖௜௦௜௢௡ାோ௘௖
                          (7) 
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4.3 Results 
 
The following hyperparameters were employed to train the proposed model, as presented in Table 1. 
 
Table 1. Model Hyperparameters 

S/N Hyperparameter Value(s) 

1 Channel dimension (Encoder block) 32,64,128,256 

2 Channel dimension (Decoder block) 256, 128, 64, 32 

3. Bridge dimension 512 

4. Maxpool size 2, 2 

5. Loss Binary Crossentropy 

6. Epochs 50 

7. Optimizer Adam 

8. Learning rate 1𝑒 − 4 

 
 
After 50 epochs, the model training accuracy and loss is presented in Fig. 4 (a) and (b) 
 
 

 
(a)                (b) 

 
Figure 4. Model training (a) loss (b) accuracy after 50 epochs 
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The results of the experiments on the benchmark Kvasir-SEG dataset and comparison with existing 
segmentation architecture are presented in Table 2.  
 
Table 2. Performance Comparison of the Proposed MultiResNet-DC on the Kvasir-SEG Dataset 

Model mIOU Dice F2 Precision Recall 
U-Net [5] 0.7472 0.8264 0.8353 0.8703 0.8504 
U-Net++ [8] 0.7419 0.8228 0.8295 0.8607 0.8437 
ResU-Net [25] 0.6634 0.7642 0.7740 0.8200 0.8025 
ColonSegNet [26] 0.7240 0.8200 - 0.8430 0.8490 
HarDNet-MSEG [6] 0.8480 0.9040 0.9150 0.9070 0.9230 
ConvSegNet [13] 0.7936 0.8618 0.8855 0.7656 0.7840 
MultiResNet [27] 0.9490 0.9050 - 0.9470 0.9540 
MultiResUNet-DC 0.9638 0.9815 0.9876 0.9716 0.9815 

 
As shown, the proposed MultiResUNet-DC achieved a mIOU score of 0.9638, which outperformed the 
mIOU recorded on the existing architectures of U-Net, U-Net++, ResU-Net, ConvSegNet and 
MultiResNet,. The Dice score achieved by the MultiResUNet-DC architecture on the benchmark 
dataset also outperformed the existing systems used for model comparison. Similarly, the F2 score, 
Precision and Recall saw significant improvements when Kvasir-SEG dataset was segmented using 
the proposed MultiResUNet-DC architecture. The visualization of the segmentation results of thirty 
random samples (group in 3) from the test masks was done, and this is presented in Fig. 5(a) to 5(c). 
 

 
Fig. 5(a). Visualization of first ten samples (Ground truth vs MultiResUNet-DC output)  

 
Fig. 5(b). Visualization of second ten samples (Ground truth vs MultiResUNet-DC output)  
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Fig. 5(c). Visualization of third ten samples (Ground truth vs MultiResUNet-DC output)  
 
As shown in Fig. 5(a) to (c), it can be observed that the output of the proposed MultiResUNet-DC is 
closely similar to the ground truth of the polyp masks, regardless of the shape and size of the polyp. 
Therefore, proving the effectiveness of the proposed MultiResUNet-DC in accurately segmenting 
polyps from colonoscopy images.  
 
Also, a comparison of the models’ computational costs in terms of frames per seconds (FPS) and 
number of model parameters was done and presented in Table 3. 
 
Table 3: Comparison of the Models’ Computational Costs  

Model FPS Parameters (Million) 
U-Net [5] 156.83 31.04M 
ResU-Net [25] 196.85 8.22M 
FANet [28] 44.00 7.72M 
ConvSegNet [13] 64.00 15.58M 
MultiResUNet [27] 29.41 7.269M 
MultiResUNet-DC 37.99 5.805M 

 
As shown in Table 3, the proposed MultiResNet-DC is a lightweight and efficient segmentation 
architecture, as the model only has 5.805 million model parameters, compared to MultiResUNet which 
has 7.269 million, ConvSegNet with 15.58 million, FANet with 7.72 million and U-Net with 31.04 
million. Also, the frames per second achieved is comparable with the state-of-the-art, as the proposed 
MultiResUNet-DC recorded 97.99 FPS. 
 
5. CONCLUSION 
 
In this paper, we introduced MultiResUNET-DC, a novel deep learning architecture that combines 
Multiple Residual U-Net and depthwise convolutional layers for accurate biomedical image 
segmentation. The model was introduced to capture multi-scale information by utilizing concatenated 
feature maps obtained from convolution blocks of varying filter sizes to improve the model’s ability to 
handle diverse polyp sizes and shapes.  
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The architecture's multi-resolution feature extraction and depthwise convolution pathways contribute 
to its ability to effectively handle complex cell structures and variations in image quality. Our 
experimental results on the Kvasir-SEG dataset, which is a publicly available dataset, demonstrate the 
superior performance of MultiResUNet in comparison to existing methods, achieving 0.9638 mIOU 
0.9815 dice, 0.9876 F2, 0.9716 precision and 0.9815 recall. Therefore, showcasing its potential to 
advance segmentation in colonoscopy images. Future work will investigate ways the architecture can 
be improved to capture more quality features with increased Frames per second. 
 
REFERENCES 
 
[1] L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal, “Global cancer statistics, 

2012,” CA. Cancer J. Clin., vol. 65, no. 2, pp. 87–108, 2015, doi: 10.3322/caac.21262. 
[2] L. Zhang, S. Dolwani, and X. Ye, “Automated polyp segmentation in colonoscopy frames using fully 

convolutional neural network and textons,” Commun. Comput. Inf. Sci., vol. 723, pp. 707–717, 
2017, doi: 10.1007/978-3-319-60964-5_62. 

[3] R. Feng et al., “SSN: A Stair-Shape Network for Real-Time Polyp Segmentation in Colonoscopy 
Images,” Proc. - Int. Symp. Biomed. Imaging, vol. 2020-April, no. March, pp. 225–229, 2020, doi: 
10.1109/ISBI45749.2020.9098492. 

[4] S. Hosseinzadeh Kassani, P. Hosseinzadeh Kassani, M. J. Wesolowski, K. A. Schneider, and R. 
Deters, “Automatic Polyp Segmentation Using Convolutional Neural Networks,” in Advances in 
Artificial Intelligence, 2020, pp. 290–301. 

[5] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image 
segmentation,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes 
Bioinformatics), Vol. 9351, no. Cvd, pp. 234–241, 2015, doi: 10.1007/978-3-319-24574-4_28. 

[6] C.-H. Huang, H.-Y. Wu, and Y.-L. Lin, “HarDNet-MSEG: A Simple Encoder-Decoder Polyp 
Segmentation Neural Network that Achieves over 0.9 Mean Dice and 86 FPS,” pp. 1–13, 2021, 
[Online]. Available: http://arxiv.org/abs/2101.07172 

[7] Y. Fang, D. Zhu, J. Yao, Y. Yuan, and K. Y. Tong, “ABC-Net: Area-Boundary Constraint Network with 
Dynamical Feature Selection for Colorectal Polyp Segmentation,” IEEE Sens. J., vol. 21, no. 10, pp. 
11799–11809, 2021, doi: 10.1109/JSEN.2020.3015831. 

[8] Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: A nested u-net architecture 
for medical image segmentation,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. 
Intell. Lect. Notes Bioinformatics), vol. 11045 LNCS, pp. 3–11, 2018, doi: 10.1007/978-3-030-
00889-5_1. 

[9] D. Jha et al., “ResUNet++: An Advanced Architecture for Medical Image Segmentation,” in 
Proceedings - 2019 IEEE International Symposium on Multimedia, ISM 2019, 2019, pp. 225–230. 
doi: 10.1109/ISM46123.2019.00049. 

[10] T. Kim, H. Lee, and D. Kim, “UACANet: Uncertainty Augmented Context Attention for Polyp 
Segmentation,” MM 2021 - Proc. 29th ACM Int. Conf. Multimed., pp. 2167–2175, 2021, doi: 
10.1145/3474085.3475375. 

[11] J. Zhong, W. Wang, H. Wu, Z. Wen, and J. Qin, “PolypSeg: An Efficient Context-Aware Network for 
Polyp Segmentation from Colonoscopy Videos,” Lect. Notes Comput. Sci. (including Subser. Lect. 
Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12266 LNCS, pp. 285–294, 2020, doi: 
10.1007/978-3-030-59725-2_28. 

[12] X. Huang et al., “Polyp segmentation network with hybrid channel-spatial attention and pyramid 
global context guided feature fusion,” Comput. Med. Imaging Graph., vol. 98, no. May, p. 102072, 



                                                                                                                                                               
  
  
 
 
 
 

 
  
 

 

20 
 

Volume 9,  No  3, September 2023 Series 

 
       

       

2022, doi: 10.1016/j.compmedimag.2022.102072. 
[13] A. O. Ige et al., “ConvSegNet: Automated Polyp Segmentation From Colonoscopy Using Context 

Feature Refinement With Multiple Convolutional Kernel Sizes,” IEEE Access, vol. 11, no. February, 
pp. 16142–16155, 2023, doi: 10.1109/ACCESS.2023.3244789. 

[14] D. You, S. Antani, D. Demner-Fushman, and G. R. Thoma, “An MRF model for biomedical image 
segmentation,” Proc. - IEEE Symp. Comput. Med. Syst., pp. 539–540, 2014, doi: 
10.1109/CBMS.2014.128. 

[15] A. Van Opbroek, M. A. Ikram, M. W. Vernooij, and M. De Bruijne, “Transfer learning improves 
supervised image segmentation across imaging protocols,” IEEE Trans. Med. Imaging, vol. 34, no. 
5, pp. 1018–1030, 2015, doi: 10.1109/TMI.2014.2366792. 

[16] A. Norouzi et al., “Medical image segmentation methods, algorithms, and applications,” IETE Tech. 
Rev. (Institution Electron. Telecommun. Eng. India), vol. 31, no. 3, pp. 199–213, 2014, doi: 
10.1080/02564602.2014.906861. 

[17] A. O. Ige and M. H. Mohd Noor, “A survey on unsupervised learning for wearable sensor-based 
activity recognition,” Appl. Soft Comput., p. 109363, 2022, doi: 
https://doi.org/10.1016/j.asoc.2022.109363. 

[18] M. Yamada et al., “Development of a real-time endoscopic image diagnosis support system using 
deep learning technology in colonoscopy,” Sci. Rep., vol. 9, no. 1, p. 14465, 2019. 

[19] D. P. Fan et al., “PraNet: Parallel Reverse Attention Network for Polyp Segmentation,” in Lecture 
Notes in Computer Science (including subseries Lecture Notes in AI and Lecture Notes in 
Bioinformatics), 2020, vol. 12266 LNCS, pp. 263–273. doi: 10.1007/978-3-030-59725-2_26. 

[20] X. Zhao, L. Zhang, and H. Lu, “Automatic Polyp Segmentation via Multi-scale Subtraction Network,” 
in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence 
and Lecture Notes in Bioinformatics), 2021, vol. 12901 LNCS, pp. 120–130. doi: 10.1007/978-3-
030-87193-2_12. 

[21] T. L. B. Khanh et al., “Enhancing U-Net with Spatial-Channel Attention Gate for Abnormal Tissue 
Segmentation in Medical Imaging,” Appl. Sci., vol. 10, no. 17, 2020, doi: 10.3390/app10175729. 

[22] R. Zhang, G. Li, Z. Li, S. Cui, D. Qian, and Y. Yu, “Adaptive Context Selection for Polyp Segmentation,” 
in Medical Image Computing and Computer Assisted Intervention -- MICCAI 2020, 2020, pp. 253–
262. 

[23] G.-P. Ji et al., “Progressively Normalized Self-Attention Network for Video Polyp Segmentation,” in 
Medical Image Computing and Computer Assisted Intervention -- MICCAI 2021, 2021, pp. 142–
152. 

[24] K. Pogorelov et al., “Kvasir: A multi-class image dataset for computer aided gastrointestinal disease 
detection,” Proc. 8th ACM Multimed. Syst. Conf. MMSys 2017, pp. 164–169, 2017, doi: 
10.1145/3083187.3083212. 

[25] Z. Zhang, Q. Liu, and Y. Wang, “Road Extraction by Deep Residual U-Net,” IEEE Geosci. Remote Sens. 
Lett., vol. 15, no. 5, pp. 749–753, 2018, doi: 10.1109/LGRS.2018.2802944. 

[26] D. Jha et al., “Real-Time Polyp Detection, Localization and Segmentation in Colonoscopy Using Deep 
Learning,” IEEE Access, vol. 9, pp. 40496–40510, 2021, doi: 10.1109/ACCESS.2021.3063716. 

[27] T. M. Khan, M. Arsalan, I. Razzak, and E. Meijering, “Simple and robust depth-wise cascaded network 
for polyp segmentation,” Eng. Appl. Artif. Intell., vol. 121, no. February, p. 106023, 2023, doi: 
10.1016/j.engappai.2023.106023. 

[28] N. K. Tomar et al., “FANet: A Feedback Attention Network for Improved Biomedical Image 
Segmentation,” IEEE Trans. Neural Networks Learn. Syst., pp. 1–14, 2022, doi: 
10.1109/tnnls.2022.3159394. 


