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This model also reveals that there is a limit to the number of cell division a T cell clone can undergo, and 
that the progeny of clones that have expanded massively during a primary immune response are more 
prone.  Thorley-Lawson (2001) in “Conceptual Model Of How Epstein-Barr Virus Establishes And 
Maintains Persistent Infection” developed a model that reveals that persistent infection by Epstein Barr 
virus appears to be steady-state equilibrium between host and virus with continuous shedding of 
infectious virus into the saliva, stable levels of infected cells in the blood and lymph nodes and a 
constitutively active antiviral immune response. The model also explains all the major features of Epstein 
Barr virus biology. 
 
Giao and Fredrick (2012) in “A Mathematical Model Of Evolution and Coexistence Of Epstein Barr Virus 
Infections In Human”. used these mathematical models to understand why Epstein Barr virus infects 
epithelial cells when B cells serve as a stable refuge for the virus and how switching between infecting 
each cell type affects virus persistence and shedding. They also proposed a mathematical model to 
describe the regulation of Epstein Barr virus infection within a host. This model was used to study the 
effects of parameter values on optimal viral strategies for transmission, persistence, and intrahost 
competition. They applied the results of the within-host model, and derived a model of Epstein-Barr virus 
dynamics in a homogeneous population of hosts that includes super infection. They used this model to 
study the conditions necessary for invasion and coexistence of various viral strategies at the population 
level. They concluded that the optimal strategy to maximize transmission is for viruses to infect epithelial 
cells, but the optimal strategy for maximizing intrahost competition is for viruses to mainly infect B cells. 
 
Daniel Bernoulli (1976) and (Hethcote, 2000).  Developed models to defend the practice of inoculation 
against smallpox. The calculations from this model showed that universal inoculation against smallpox 
would increase the life expectancy from 26 years 7 months to 29 years 9 months (Bernoulli & Blower, 
2004). Daniel Bernoulli’s work preceded our modern understanding of germ theory, and it was not until 
the research of Ronald Ross into the spread of malaria, that modern theoretical epidemiology began. 
Anderson (1991) in “A Mathematical Model of Transmission Dynamics And Control Of Infectious Disease 
Agents”. revealed that the concept of an infection’s basic reproductive rate, RO, is central to an 
understanding of the population biology of infectious disease agents.  
 
The parameter, RO, measures the ability of an infection to give rise to secondary cases, and its value is 
determined by a variety of factors specific to the biology of the disease agent and that of its host.The 
model also revealed that the condition, RO=1, defines a transmission threshold below which a disease is 
unable to maintain itself within the community. The value of RO can be estimated from horizontal or 
longitudinal epidemiological studies of the prevalence and intensity of infection in various age classes of 
the population, measurement of this parameter provides a means of estimating the proportion of the 
community that must be immunized or receive treatment, either to eradicate an infection or to reduce its 
prevalence to a defined level. 
 
Herbert et al  (1986) in “Deterministic Models For Epidemics Which Occur Quickly And Long-term 
Endemic Diseases” considered births and deaths were considered. They formulated contact-rate matrices 
in terms of activity levels and subpopulation sizes by using a proportionate mixing assumption. They also 
presented the methods for estimating epidemic and endemic parameters in both homogeneous and 
heterogeneous populations. 
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3.  ASSUMPTION 
 
Due to the nature of the virus, and the SITR model we are using, we now make the following 
assumptions; 

1. The only way a person can leave the susceptible class is to become infected. 
2. The only way a person can leave the infected class is to be treated or removed (either by natural 

death or by the virus). 
3. Age, sex, social status, and race do not affected the probability of being infected. 
4. There is no inherited immunity 
5. The member of the population mix homogeneously (have the same interactions with one another 

to the same degree). 
 
4  FORMULATION OF THE MODEL 
 
The Schematic Diagram 
Schematic diagram is a representation of a system using abstract, graphic symbols rather than realistic 
pictures. Below is a schematic diagram for our mathematical model on Epstein Barr virus.  
 
 

                                    T                
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5. DESCRIPTION OF VARIABLES AND ASSOCIATED PARAMETERS 
 
The table below depicts Variables and Associated Parameters 
 
Table 1: Description of Variables &  Associated Parameters 

S(t) susceptible population at a particular time 

I(t) infected population at a particular time 

T(t) treated population at a particular time 

R(t) removed population at a particular time 

µI natural death and infected population at a particular time 

µR natural death and removed class at a particular time  

 
Human recruitment rate 

Β rate at which susceptible class become infected 

Α rate at which infected humans move to removed class 

 
rate at which untreated people are removed by the virus 

N the total population 
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6.  THE DERIVATION OF ORDINARY DIFFERENTIAL EQUATIONS FOR THE MODEL 
 

  

  

  

  

  

 
Therefore; 

  

  

  

  

 

  

 
7. DISEASE FREE EQUILIBRIUM OF THE MODEL (DFE) 
 
The disease free equilibrium is given as; 
 

  

This implies that at disease free equilibrium; 
 

  

Substituting the values of I, T, and R in the equations above we have the disease free equilibrium as; 
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8.  THE DISEASE ENDEMIC EQUILIBRIUM OF THE MODEL (DEE) 
 
Let;  
 
(  

At the disease endemic equilibrium, S,I,T,R exist  
 
The equations are; 
 

  

  

  

  

 
The disease endemic equilibrium of the model is given as; 
 

  

 
9.  THE LOCAL STABILITY OF DISEASE FREE EQUILIBRIUM OF THE MODEL 
 
To establish the local stability of the model, we first get the basic reproduction (RO) using the jacobian 
matrix. 
 
The equations are given as;  
 

  

  

  

 …………………..(D) 

 
The jacobian matrix of the above equations is given as; 
 

  

The disease free equilibrium is given as;  
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Substituting the values of S, I, T and R into the jacobian matrix we have; 
 

  

 

without loss of generality. 

The characteristic equation is given as  

 
Therefore;  

  

 
  

  

If  

 

But and  

Therefore;  

  

(The basic reproduction number at the disease free equilibrium) 

If the basic reproduction number, is less than one (i.e  we therefore conclude that the 

disease free equilibrium of the model is locally asymptotically stable.  
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10.  THE LOCAL STABILITY OF DISEASE ENDEMIC EQUILIBRIUM OF THE MODEL 
 
The disease endemic equilibrium of the model is given as; 
 
 

  

 
The Jacobian matrix is given as; 
 

  

 
Therefore imputing the values of  into the Jacobian matrix, we have; 

 

  

 
For conveniences, let; 
 

  

The characteristic equation is given as;   

 
thus; 

  

 

  

 

Therefore if , It implies that  

 

But  
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Therefore;  
 

  

(The basic reproduction number at the disease endemic equilibrium)  
 
If our basic reproduction number is greater than one (i.e.  therefore we conclude that the 

disease endemic equilibrium of the model is locally unstable. 
 
This implies that the virus will spread within the population.  
 
From the above equation, it is obvious that if infection rate, is equal to zero, there is no reproduction in 

the system. 
 
ANALYSIS OF THE MODEL 
Based on the nature of Epstein Barr virus we obtained the table of values below. 
 
Table 2: Table of Values 

PARAMETER DISCRIPTION VALUES 

  Birth rate 0.3 

  Natural death rate 0.4 

  Infection rate 0.3 

  Treatment rate 0.2 

  Removal rate 0.3 

  Rate of  susceptible after treatment 0.6 

 
We will now use our parameter values to establish the local stability of the model using the basic 
reproduction gotten at the disease free equilibrium and disease endemic equilibrium. 
At the disease free equilibrium, the basic reproduction number is given as; 
 

  

Therefore, substituting the parameter values into above relation we have; 
 

  

Since our basic reproduction number,  at the disease free equilibrium is less than one ( , 

we therefore conclude that the disease free equilibrium of the model is asymptotically stable. 
 
Also, the basic reproduction number at the disease endemic equilibrium is given as; 
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Therefore, by substituting the values of the parameter into the above relation, we have; 
 

  

Since our basic reproduction number,  at the disease endemic equilibrium is greater than one 

(  therefore we conclude that the disease endemic equilibrium of the model is unstable. 

This shows that the virus will spread within the population. 
 
11.  THE GRAPHICAL SOLUTION OF THE MODEL 
 
Figure1:Graph Of Susceptible Population Against Time (T) 
 

 

 
Figure1:Graph Of Susceptible Population against Time (T) 

 
 

 

 
Fig 2: The Graph of Treated Population against Time (t) 
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Figure 3: The Graph Infected Population against Time (t) 

 
 

 

Figure 4: The Graph of The Removed Population Against Time 
 
 

 
 

Figure 5: The Combined Graph against Time (t) 
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12.  INTERPRETATION OF GRAPHICAL RESULTS 
 
We discovered that Epstein Barr virus is a communicable disease that can transmit from one person to 
another, as the susceptible population dropped drastically; as we can see from figure one. This may be 
due to the fact that the virus has the ability to remain in the host for life without causing any disease; 
therefore the virus is not easily detected in a population. So, almost all the susceptible populations got 
infected. We also discovered that infected populations increased sporadically before decreasing as we 
can see from figure 2. This may be due to the fact that the virus is not detected early in a population and 
so there was delay in treatment. So the infected populations decreases when the treated populations 
increases. We discovered also that treatment rate has a little delay before taken effect as we can see 
from figure 3, this may result from the fact that the infected populations did not yield to treatment early 
due to the nature of the virus. Finally we discovered that the rate at which the virus remove people in the 
population hardly increase as we can see from figure 4. This may be due to the fact that the virus has the 
ability to remain in the host for life without causing the virus associated disease (infectious 
mononucleosis) and this shows that the virus hardly kills.    
 
12.1 Possible Control 
Due to the research we made and the result we obtained from the model; we therefore give the following 
possible control of Epstein Barr virus within human population. 

i. People should avoid unnecessary kissing, since there is no vaccine to prevent against the virus. 
ii. The world health organization (WHO) should improve on the treatment rate of the virus. Since the 

graphical solution revealed that increase in the treatment rate decreases the infection rate. 
 
 
13. CONCLUTION  
 
From the research we made and the result we got from the graphical solution of the model, it is obvious 
that Epstein Barr virus is a dangerous virus that is not easily discovered within a population. Also the virus 
has the ability to maintain long life persistent infection in the host, due to the fact that the removal rate is 
very low as we can from the graphical solution. We therefore conclude that Epstein Barr virus spread 
globally due to the fact that the virus is not easily discovered in a population. Also because there is no 
vaccine to prevent against the virus.  
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