

331

Proceedings of the iSTEAMS Multidisciplinary Cross-Border Conference
University of Professional Studies, Accra Ghana 2016

Towards Benchmarking of Traditional Software Quality Metrics on Web-based Systems

Olaye, Edoghogo, Apeh, Simon T.

Department of Computer Engineering

University of Benin

Benin City, Nigeria

E-mail: edoghogho.olaye@uniben.edu; apeh@uniben.edu

Phone: +2348061227175

ABSTRACT

Software quality is a very important topic in software engineering and the use of software metrics is an accepted method of

estimating software quality. Several metrics have been proposed over the years leaving software developers with many choices

but no scientific way of determining the right metrics for a specific software. The current approach is largely based on intuition,

popularity, expert opinions and availability of tools. We propose a traditional software quality benchmark system for web-based

system called TSQM Benchmark. The concept of the research and the benchmark architecture are presented in this paper as a

foundation for this research. This paper also describes the design methodology and preliminary development. When the TSQM

Benchmark is fully implemented, it will establish a method to determine the degree of suitability of traditional software quality

metrics for evaluating web-based systems. The benchmark should be able to correctly rank traditional software metrics in the

order of which metric is most suitable for the assessment of web-based system quality of a given category. This study will

contribute to researchers and software engineering practitioners in the area of web engineering with a systematic, unbiased and

scientific evaluation of software metrics.

 Keywords: Benchmarking, Software Quality Metrics, Web-based systems, Web applications.

1. BACKGROUND TO THE STUDY

Software quality metrics are means of measuring specific

attributes of a software artefact such as source codes. The

attributes measured could serve as an indicator of the quality

of the system, productivity of the developers or efficacy of the

design method. Today, business have become practically

online and relies on software such as web-based systems to

make products and services available to a global audience via

the Internet (Desai & Srivastava, 2012). A web-based system

or web application is a dynamic extension of the World Wide

Web or an application server (Nourie, 2006). Despite the

many benefits of web-based systems, its use has created

problems for users and developers. Quality remains a

challenging problem amongst other problems such as privacy,

security, user acceptance, and cost.

A subset of the quality problem is how to define quality and

how to measure quality of a web based system. Software

engineers in general and web engineers in particular are

evolving methodologies, tools, standards and frameworks to

solve the quality issue. Web engineering is a holistic approach

that deals with all aspects of Web-based systems development,

starting from conception and development to implementation,

performance evaluation, and continual maintenance (Ginige &

Murugesan, 2001). Its main focus is the establishment and use

of sound scientific and engineering management principles as

well as systematic approaches for high-quality web-based

systems (Heuser, 2004). The advocacy for web engineering

according to Mendes (2005) are geared towards a common

terminology, more empirical studies, development of

professional web engineers, research networks and special

interest groups. (Mendes, 2005).

Empirical studies involves experimentation on software

systems to collect data on real-life projects for the formulation

and validation of hypothesis concerning software engineering

methods (Sommerville, 2011). Software metrics and

measurement are the basis of empirical software engineering

(Endres & Rombach, 2003). Therefore, there is the need to

develop software metrics to support the evidence based

approach of empirical software engineering. In this regards,

metrics were introduced in the 1970s for quantitative software

quality measurements (Boehm, Brown, & Lipow, 1976).

However, no success was made to develop as single metric for

quality (Mills & Shingler, 1988). Since then, several metrics

have been proposed as software development methodologies

evolved. These generation of metrics can be roughly

categorized into traditional software metrics, (Mills, 1988),

object-oriented software metrics (Shaik & Reddy, 2012) and

web metrics (Calero, Ruiz, & Piattini, 2005), (Dhyani, Ng, &

Bhowmick, 2002).

The number of metrics in each category are increasing

drastically in the order presented and many new metrics have

been introduced deserving their own category. For example, a

study reported 133 Web Size metrics for web sites alone

within 12 years (Mendes, Counsell, & Mosley, 2005) while

another survey identified more than 27 dynamic metrics

(Chhabra & Gupta, 2010). Studies have shown that traditional

software metrics are inadequate for object-oriented software

332

Proceedings of the iSTEAMS Multidisciplinary Cross-Border Conference
University of Professional Studies, Accra Ghana 2016

(Basili, Briand, & Melo, 1996). This claim directly led to the

development of OO metrics such as the CK Metrics suite

(Chidamber & Kemerer, 1994).

However, many developers still use traditional software

metrics for object-oriented software products (Tegarden,

Sheetz, & Monarchi, 1992) and web based systems. A typical

example is the lines of code (LOC) metric that is being

collected by majority of software metrics tools (Lokhande,

2012).

In the area of web-systems or web-application development

the use of scripting programming languages such as PHP and

JavaScript is prevalent. Though many of these scripting

languages are being reengineered to make them object-

oriented, it appears that many web-based application

developers still use the procedural and functional

programming languages. Accordingly, though the state of the

art is towards web metrics, many web-based application

developers still use myriad of metrics that cuts across

traditional, object-oriented and web metrics. At the same time,

there are numerous metrics being developed for web-based

systems with no clear cut was of choosing the best set of

metrics for a given software product. Efforts made in this

direction have not addressed the problem. Some of these

efforts include: development of a catalogue of software

metrics (Bouwers, Deursen, & Visser, 2014), metrics

evaluation (Schackmann, Jansen, Lischkowitz, & Lichter,

2009) and a pluggable tool for metrics evaluation (Higo, et al.,

2011).

The current reality is such that there is no established way of

judging which metric is better than the other for quality

assessment of web-based systems. Thus the primary focus of

the current research geared towards developing a standard

basis for selecting and applying traditional software metrics

which is the most popular and most common on web-based

systems. The benchmarking method was selected as the judge

that will judge the suitability of the existing traditional judges

(traditional metrics).

The authours wish to emphasize that benchmark results are not

presented in this paper but will be published elsewhere. This

paper only reports on the architecture of the benchmarking

method. The architecture has been implemented to a stage that

its practicality can be assessed.

2. STATEMENT OF THE PROBLEM

The manner in which web based software systems are

developed, deployed, and managed affects quality. Web

software developers often use haphazard approaches which

lack rigor, systematic techniques, sound methodologies, and

quality assurance (Ginige & Murugesan, 2001). Traditional

software metrics are sufficient for traditional software

development such as desktop software and operating systems.

These metrics are robust and have been applied to many

software systems with good results. However, the relatively

more recent web based metrics though numerous are arguable

laboratory based. They are mainly proposed for use on new

web based systems rather than for existing web based systems.

It may appear that the best practice for quality evaluation of

existing web-based systems is to apply traditional metrics on

web based software or to use aspects of the metrics.

 However, there is no established bases to determine which of

the metrics are best suited for this purpose. In this regards,

very few benchmarks studies have been conducted and

currently, metrics selection is mostly arbitrary. The specific

problems this research seeks to address are as follows:

i. No established bases to determine which traditional

metrics are best suited for web-based system.

ii. Very few software metrics benchmarks studies have

been conducted and currently, metrics selection is

mostly arbitrary

3. MOTIVATION AND KEY OBJECTIVES

The goal of this research is to benchmark traditional software

quality metrics on web based systems to bridge this gap with

the following objectives:

i. To develop a benchmarking framework for

traditional software metrics on web-based software

systems.

ii. To identify the weakness or sufficiency of applying

existing traditional software quality metrics on web-

based systems.

iii. To develop a benchmarking tool for traditional

software metrics on web based systems

iv. To generate benchmark data for traditional software

quality metrics on web-based systems

v. To validate the benchmark data generated

The study encompasses benchmarking activities using

software tools. It involves development of new tools and

modification of existing tools. The benchmarking is limited to

traditional software quality metrics that can be statically

determined from source codes. The high-level objective is

achieved through the following research questions.

RQ1: What is the basis for choosing a software metrics over

another when developing web based systems?

RQ2: How can a metric be compared against another metrics

to determine which of the two is a better measure of a specific

quality characteristic for web based software system?

3.1 Relevance of the Study
The current research work is necessitated upon the following

developments: The growth of internet usage, proliferation of

web-based systems, the need for quality software, the effect of

poor quality on web-based systems, problem with web metrics

and the need for a benchmarking study. These developments

and state-of-the-art creates numerous challenges for software

developers and software users. A software practitioner

described the problem as poor quality levels due to "shortage

of solid empirical data about quality, productivity, schedules,

costs, and how these results vary based on development

methods, tools, and programming languages" (Jones, 2014b).

Software failure leads to losses due to the increasing reliance

on software, especially web based software over the years.

Software failure is a function of software quality. The internet

333

Proceedings of the iSTEAMS Multidisciplinary Cross-Border Conference
University of Professional Studies, Accra Ghana 2016

is being used for a variety of reasons ranging from health

(Pereira, Koski, Hanson, Bruera, & Mackey, 2000),

marketing (Brown & Goolsbee, 2000) and mobile

organization management (Sołtysik-Piorunkiewicz, 2015).

As of 2014 the software industry labors under a variety of

non-standard and highly inaccurate measures compounded by

very poor measurement practices (Jones, 2014a). Studies have

shown that internet traffic have doubled each year and there is

an insatiable want for more bandwidth (Odlyzko, 2003).

Developers often use ad hoc, hacker-type approaches, which

lack rigor, systematic techniques, sound methodologies, and

quality assurance (Ginige & Murugesan, 2001).

Similarly, some metrics not well defined and are not

empirically or theoretically validated, and hence they can

confuse interested users instead of helping them (Calero, et al.,

2005). In addition, there is no single metric to measure quality,

few synthetic metrics and inadequate metric tools.

Benchmarking searches for improvement and best practices

but is often used as a software evaluation method for

comparing software systems (García-Castro, 2008).

3.2 Related Work

3.3 Related work on Benchmarking
Benchmarking is a process of running a number of standard

tests using alternative tools/methods (usually tools) and

assessing the relative performance of the tools against those

tests.

Benchmarking is a term that has different meanings in

different disciplines. It generally refers to a comparison of an

organization's performance or product's performance against

its peers. Clearly, the term was used long before the invention

of computers (Jones, 2010). Several definitions have been

proposed for benchmarking:

Kitchenham, Linkman (1997) viewed benchmarking as a

method of evaluating software tools. In this context

benchmarking was defined as "..a process of running a

number of standard tests using alternative tools/ methods

(usually tools) and assessing the relative performance of the

tools against those tests" (Kitchenham, Linkman, & Law,

1997)

Sim et al, (2003) defined benchmarking as a test or set of tests

used to compare the performance of alternative tools or

techniques. They advocated for the definition of benchmarks

in software engineering areas (Sim, Easterbrook, & Holt,

2003).

Gracia-Castro argues that benchmarking offers more benefits

than evaluation through continuous improvement and

recommendations on best practices (García-Castro, 2008).

Blackburn et al., (2006) argues that benchmarks drive

computer science research and industry product development

(Blackburn, et al., 2006). It sets standards for innovation and

can encourage or stifle it. (Runapongsa, Patel, Jagadish, & Al-

Khalifa, 2002) worked on benchmarking database systems.

They indicated that benchmarks are valuable to potential users

of a database system in providing an indication of the

performance that the user can expect on their specific

application. (Sim, et al., 2003) noted that benchmarks have

been used in computer science to compare the performance of

computer systems, information retrieval algorithms, databases,

and many other technologies.

However, they argued that some benchmarking is not

straightforward in software engineering because the

performance measures are not straightforward but can be quite

complex. They suggested that the complexity arises from the

intention of the tools and techniques for the creation of large

software systems. A tool called the YCSB Client, to execute

the YCSB benchmarks was developed by Cooper et al, (2010).

The purpose of YCSB is to tackle the lack of applesto- apples

performance comparisons that makes it difficult to understand

the tradeoffs between Cloud systems and the workloads for

which they are suited (Cooper, Silberstein, Tam,

Ramakrishnan, & Sears, 2010). Peacekeeper is a free and fast

browser test that measures the speed of a web browser. It

works on any computer, device or platform that is equipped

with a web browser ("Peacekeeper,").

A modified version of Peacemeaker is PCMark 8, that

implements industry standard PC benchmarking tools. The

TPC-C benchmark simulates a complete computing

environment where a population of users executes transactions

against a database. The benchmark is focussed on the principal

activities (transactions) of an order-entry environment. The

SPEC Web 2009 benchmark is the next-generation SPEC

benchmark for evaluating web server performance. Workloads

include: Banking, which is a fully secure SSL-based

workload; Ecommerce, which includes both SSL and non-SSL

requests; and Support, which is a non-SSL workload that

includes large downloads (SPEC, 2009). The DaCapo

Benchmarks, a Java Benchmarking Development and Analysis

research is a set of open source, client-side Java benchmarks

focused on improving methodologies for choosing and

evaluating benchmarks to foster innovation in system design

and implementation for Java and other managed languages. It

covers 6 metrics namely: WMC, DIT, NOC, CBO, RFC,

LCOM. DaCapo improves over SPEC Java in a variety of

ways, including more complex code, richer object behaviours,

and more demanding memory system requirements

(Blackburn, et al., 2006).

Rentrop, (2006) investigated the uses of software metrics as

benchmarks for source code (Rentrop, 2006). Dolan & Moré,

2002 attempted to benchmark optimization software with

performance profiles based on sound theory and composite

graph. Dolan & Moré, (2002) generated the benchmark

results by running a solver on a set P of problems and

recording information of interest such as the number of

function evaluations and the computing time. Maxwell &

Forselius, (2000) studied benchmarking software development

productivity towards comparing a company's software-

development productivity to that of similar projects. They

developed benchmarking equations derived from a

productivity-variation analysis performed on the Experience

database (Maxwell & Forselius, 2000).

Other benchmarking research that are not specifically meant

for software metrics include Benchmarking Attribute

Selection Techniques for Discrete Class Data Mining (Hall &

Holmes, 2003), and Benchmarking Semantic Web technology

which sought to develop a methodology and apply it to

334

Proceedings of the iSTEAMS Multidisciplinary Cross-Border Conference
University of Professional Studies, Accra Ghana 2016

benchmark interoperability of semantic web technologies

using RDF and OWL as interchange languages (Castro, 2008),

(García-Castro & Gómez-Pérez, 2010).

Similarly, Vorhies and Morgan, (2005) used benchmarking in

a marketing research by empirically examining the potential

business performance benefits available from benchmarking

the marketing capabilities of top-performing firms (Vorhies &

Morgan, 2005). None of the studies reviewed attempted to

benchmarks software quality metrics. The only studies that

come close are that of Rentrop and Blackburn et al, 2006. In

the current research, a method will be developed to directly

map the existing benchmarks for popular framework into the

developed benchmark. Similarly, a generic benchmark for

frameworks will be developed with the purpose of integrating

framework that have not been benchmarked.

3.4 Web Software Quality and Web Evaluation
Software quality concerns are not new. As early as the 1960s,

quality issues were being investigated with initial thrust to

define quality (Boehm, et al., 1976). Quality is viewed from

the perspective of the general utility of software. The

description of quality is somewhat hierarchical. Quality

attributes such as consistency is a sub attribute of reliability

which in turn is a sub attribute of as-is-utility. In the

characteristic tree, there are 15 attribute specified in the

Boehm model.

Several researches have been conducted in the area of web

metrics. Dhyani et al. (2002) have proposed a web

classification framework to try to determine how the classified

metrics can be applied to improve web information access and

use. The work of Dhyani et al. (2002) however did not

consider important dimensions such as life-cycle processes

and web features. To provide , a broader classification, the

Web Quality Model (WQM) was developed which

distinguishes three dimensions related to web features, life-

cycle processes and quality characteristics (Ruiz et al., 2003).

The first version of the WQM model was developed in 2003

and was refined in a survey (Calero et al., 2004) by using it in

the classification of 326 web metrics. Further work on the

model attempted to refine it to support the classification of

metric related to effort and reuse. This was achieved by

including organizational life-cycle processes (Ruhe, Jeffery, &

Wieczorek, 2003).

The usefulness of quality models was investigated in (Al-

Kilidar, Cox, & Kitchenham, 2005) and a study of how such

models can be used in software package selection investigated

in (Franch & Carvallo, 2003). Usability evaluation methods

can be mainly classified into two groups: empirical methods

and inspection methods. Empirical methods are based on

observing, capturing, and analyzing usage data from real end

users, while inspection methods are performed by expert

evaluators or designers, and are based on reviewing the

usability aspects of Web artifacts such as conceptual models

or user interfaces with regard to their conformance with a set

of guidelines. (Abrahão, Insfran, & Fernandez, 2014)

Gupta, Goyal, & Goyal proposed a Hierarchical Model for

Object-oriented Design Quality Assessment (HMOOD-QA)

model for determining the quality of a product built by using

object-oriented approach. They considered a 4-layered (basic,

metric, factor and quality) product quality based on the factors

viz. Defect Density, Complexity and Change Effort (Gupta,

Goyal, & Goyal, 2015).

The test specific quality model is a quality model for test

specification is an adaptation of ISO/IEC 9126 to the domain

of test specification. While the ISO/IEC 9126 model deals

with internal quality, external quality, and quality in use, the

model focuses on internal quality characteristics (Zeiss, Vega,

Schieferdecker, Neukirchen, & Grabowski, 2007). Other

Models (Kavindra, Praveen, & Jitendra, 2014) include: a user-

centric web quality assessment model presented by

Nakwichian and Sunetnanta. Similarly, Brajnik suggested the

adoption of Goal-Question-Metric paradigm as a useful

framework to guide the definition of the quality model

(Brajnik, 2001). Fitzpatrick et al argued for models based on

Human Computer Interaction standards (Fitzpatrick, 1999).

Olsina et al described a Quality Evaluation Model and

outlined a quality requirement tree which provides a

descriptive framework to specify these quality characteristics

(Luis Olsina & Rossi, 2000) (Luiz Olsina, 1999). After

evaluating some models, Kavindra, et al submitted that while

they are suitable for internal and external evaluation, the

models did not covers all quality aspects especially

communication aspects such as theoretical and specific aspects

and even more important, aesthetic aspects. They argued that

since the quality model of a website is determined by the

process of evaluation, design, implementation and validation

involving a variety of methods and tools. In order to carry out

on these processes, quality metrics need to be defined

(Kavindra, et al., 2014).

3.5 Related work on Metrics
A metric is defined as a measure of degree to which a software

system possesses or exhibits a certain (quality) characteristics.

According to Chauhan, Gupta, & Dixit (2014) , there are three

types of metrics; Process metrics, project metrics and product

metrics. There are many other ways to categorize software

metrics. One way is to consider the phase at which the metrics

are collected in the software development lifecycle. Planning

metrics can be collected before development while code

metrics can only be collected during or after coding. Another

way to classify metrics is to consider if the metric is static or

dynamic (Mayo, Wake, & Henry, 1990). Some categories

traditional metrics considered by some authors include: size

metrics (Lines of code, Function points, bang), complexity

metrics (cyclometric complexity, extensions to v(G), knots),

Halstead's product metrics (program vocabulary, program

length, program volume) and quality metrics (defect metrics,

reliability metrics, maintainability metrics) (Mills & Shingler,

1988). A metric suit for object oriented design was developed

by (Chidamber & Kemerer, 1994).

Work has been carried out to investigate the suitability of

benchmarking based on software metrics method to determine

the maintainability of the source code of software systems

(Rentrop, 2006). The state of the art in metrics is towards

more empirical validations (Srinivasan & Devi, 2014) and

integration of metrics tools (Jain, Srivastava, & Katiyar,

2014). Metrics tools have been developed to present metrics in

UML class diagrams (Turan, 2015). Using metrics from

service level agreements (SLAs) to monitor quality of web

335

Proceedings of the iSTEAMS Multidisciplinary Cross-Border Conference
University of Professional Studies, Accra Ghana 2016

services (Andreasen, Nielsen, Schrøder, & Stage, 2015). The

trend towards making software usable have led to the

introduction of more usability metrics (Abrahão, et al., 2014).

The usability beam has also landed on open source software

(Andreasen, et al., 2015). Metrics selection for improving the

performance of software has also been given consideration of

recent (V. Chauhan, et al., 2014). Metrics for software quality

estimation during early stages of software developing is

receiving focus by some researchers (R. Chauhan, Singh,

Saraswat, Joya, & Gunjan, 2014)

3.6 Related work on Metric Tools
Many tools such as OOMeter (Jain, et al., 2014), CKJM

(Spinellis, 2005), and a Metric Based Code Analyzing Tool

(Fernando, et al., 2012) have been developed for collecting

software metrics. A review of some of these tools can be

found in the work of (Lincke, Lundberg, & Löwe, 2008) and

(Novak & Rakić, 2010). Two tools (QMetric and MASU)

deserves special mention because they form part of the

proposed TSQM Benchmark. The QMetric tool suite (Figure

1) provides a generic evaluation engine for evaluating process

metrics, as well as tool support for the definition of quality

assessment models and their automatic evaluation

(Schackmann, et al., 2009).

Figure 1: QMetric tool suit Architecture

The Metrics Assessment plugin platform for Software Unit (MASU) is a measurement tool developed by Japanese scholars using

the Java programming language (Higo, et al., 2011). MASU can handles Java full grammar and the code is under development.

The architecture of MASU is shown in Figure 2.

336

Proceedings of the iSTEAMS Multidisciplinary Cross-Border Conference
University of Professional Studies, Accra Ghana 2016

Figure 2: Architecture of MASU
These two tools collectively offers two major distinctive features: (1) The ability to collect any metric using a single tool by

extending its functionality; and (2) the ability to evaluate the quality of a software product using a standard quality model.

4. Research Methodology

4.1 The Research Design
The research objectives was accomplished through the process described in Figure 3.

Figure 3: TSQM research process

4.2 Design Workflow for the TSQM Benchmark
The design workflow is broken down into two phases. Each

phase consist of a set of activities that will be performed

iteratively until the desired outcome is achieved. Phase 1 has

been concluded and Phase 2 is ongoing.

Phase 1 (Specification and design of the TSQM
Benchmark): This phase of design specifies the materials and

the proposed techniques that will be used to achieve the

current research objectives. The activities in this stage

includes: Determination of evaluation criteria for traditional

software quality metrics and Determination of selection

criteria for web-based systems, Application of selection

criteria to select 10 web based systems; Application of

selection criteria to select traditional software quality metrics,

Determination of selection criteria of metrics tools,

Development of the architecture for the TSQM Benchmark

and Setting up the benchmarking Laboratory.

Phase 2 (Development and implementation of the TSQM
Benchmark): This phase is concerned with the development

of the Traditional Software Quality Metrics (TSQM) method

and actual benchmarking. Activities include: Development of

the TSQM Benchmark tool, Quality evaluation of selected

web-based system to establish a base line and generate

benchmark queries; Generate benchmark queries, Evaluate

selected software quality metrics, Evaluate the selected

benchmarking methods, Benchmark traditional software

metrics using existing tools and evaluation methods, Apply

benchmarking method to selected software quality metrics.

4.2.1 Metrics Selection Criteria

The selection criteria for traditional software quality metric is

that the metrics must be a metric that was originally developed

to collect measure quality attributes of software written using

a procedural programming language. The metrics should also

be a classic metric in that it must have been widely studied by

different authors.

4.2.2 Web-based System Selection Criteria

Software selection would be based on a number of factors, the

most important factor being that they should be web based.

Other factors that will be considered include: availability of

design artifacts, availability of source codes, licenses,

programming language, popularity, industry type, diversity of

sizes of the systems, user base, framework used, platform, web

technologies used and , diversity of functionality provided.

Preference is given to web-based systems whose source code

is readily available without license limitations. The software

source codes were obtained from GitHub (www.github.com),

SourceForge, vendor websites and Google codes.

337

Proceedings of the iSTEAMS Multidisciplinary Cross-Border Conference
University of Professional Studies, Accra Ghana 2016

It was observed that most source codes were being migrated to

GitHub. The benchmarking method proposed in the current

research will be greatly facilitated by source code version

information available from GitHub. The preliminary software

selection include:

• Adminer, Single source RDMS for MySQL

• phpMyAdmin, A database management system for

MySQL

• RoundCube, A full featured email client

• SquirrelMail, A full featured email client

http://squirrelmail.org/download.php

• Disqus,

• OSQA, Question and Answer system

• Converse.JS, An XMPP chat client that can be

directly integrated into a website

• wolfCMS, Content management system

• Wordpess, Requires installation

• Joomla, Requires installation

• moodle, e-learning application. Requires PHP

version 5.4.4. Requires installation

• WaeUP, An e-education portal

• Clumsy Bird, A MelonJS made "Flappy Bird" clone

• Justice (Also a tool), Creates an on page toolbar that

displays page timing metrics and a streaming fps

meter.

• Phantomas (Also a tool), PhantomJS-based modular

web performance metrics collector

4.3 Design Considerations and component selection for

Benchmarking Tool
The design goal of the benchmarking process is to provide a

level playing field for all the selected traditional software

quality metrics. To achieve this goal, a framework for an

extensible interface layer for each metric in the benchmarking

tool is developed. Implementation of this layer will be in form

of plug-in that gets the value of a metric and formats the data

to a type required by the benchmarking tool. The metric value

will be validated with results obtained by existing metric tools

for the metric under investigation.

The benchmarking tools that will be used in the current

research will be developed from the following components

which are part of other tools:

i. MASU : Metrics Assessment plugin platform for

Software Unit. Although it is developed for object

oriented programming language, some of its

components and plugin structure will be used for the

benchmarking tool. The source code analysis unit

will be modified and adapted as well as the plugin

management unit

ii. QMetrics: It is a tool designed for generic evaluation

of process metrics. The tool uses XML to define

quality evaluation as well as metrics definitions.

These approaches will be utilized in developing the

benchmarking tool in the current research.

iii. ANTL: ANother Tool for Language Recognition is a

parser generator for reading, processing, executing,

or translating structured text or binary files.

4.4 Proposed benchmarking method for the TSQM-

Benchmark
The method used by TSQM-Benchmark is similar to the

metric validation method described in (Gafni, 2008) which

seeks to prove that metrics behave in a consistent and logical

mode in quantifying the quality of software. In the current

research, traditional software metrics values will be calculated

for the selected web based software systems. Then the web

software system is deliberately and scientifically altered to

reduce its quality along each of the quality dimensions. The

metrics is then recalculated and new value noted. Ranking for

each metric for the "TSQM Benchmark" is calculated based

on the degree of change and the consistency of change. A rank

factor is determined which is a function of the old and new

metric values as expressed in Equation 3.1. The flowchart for

the TSQM Benchmark method is shown in Figure 4.

The ranking will be based on the following statistical analysis

of experimental results:

A. Which metrics behave in the most consistent and

logical mode?

B. To what extent does a metric M behave in a more

consistent and logical mode than metric Mi in

quantifying web-based system quality?

C. To what extent does the value for metric Mi on a

given web-based system change when the quality of

the web based software system increased or

decreases.

338

Proceedings of the iSTEAMS Multidisciplinary Cross-Border Conference
University of Professional Studies, Accra Ghana 2016

Figure 4: Flow chart for proposed TSQM Benchmark

4.5 Setting up the Benchmarking Laboratory
The benchmarking laboratory will be setup in such a way that it can support both the development and the implementation of the

benchmarking tool. The lab will contain systems with configurations to support the running of the selected benchmarking tools.

The major components are the main computer, the support computer, Ethernet switch and KVM switch. The Main Test Computer

has an Intel Core i7 processor (2.3GHz), 8GB RAM, Windows 7 Home Basic (64 bits) operating system, Java runtime

environment (jre) , and Java development kit (jdk). the support computer (Test Computer 2) has an Intel Duo Core processor

(2.3GHz), 6GB RAM, Windows 8 (64 bits) operating system, Java runtime environment (jre) , Java development kit (jdk).

339

Proceedings of the iSTEAMS Multidisciplinary Cross-Border Conference
University of Professional Studies, Accra Ghana 2016

5.1 The TSQM Benchmark

The architecture of the benchmarking system is shown in Figure 5. It is named Traditional Software Quality (TSQM)

Benchmark. The proposed benchmarking method will have the capacity to evaluate traditional software quality metrics based on

their suitability for web-based systems quality evaluation.

Figure 5: The proposed Benchmarking Architecture

The system comprises a code analysis unit, metrics plug-in unit and quality model integration unit. The code analysis is done to

separate web data and HTML related information from the actual web-application program. The second stage of code analysis is

the conventional parsing to make processing easy. The selected traditional metrics will be implemented as plugins which will be

managed by the plug-in management unit. All the metrics are collected for a given web-based system and stored in the metrics

value database. The WebQ quality model(Luis Olsina & Rossi, 2002) will be encoded in XML and used to develop metric

queries by the Metric query tool. These queries are stored in the metric queries database. The benchmarking unit will implement

the benchmarking method to rank the metrics based on encoded quality model information and metric values for all the selected

web-based systems. The results of the benchmarking will be stored in the benchmark database.

5.2 Data presentation and Expected Results
Preliminary results have been obtained from source code analysis of the selected web-based systems. The analysis of the result

for presentation is currently ongoing. It is expected that at the end of the current research, the TSQM-Benchmark method will be

fully developed, applied on selected traditional software metrics using selected web-based systems and evaluated. A number of

specific benchmark results are expected for every given metrics such as Functionality Benchmark, Reliability Benchmark,

Usability Benchmark, Efficiency Benchmark, Portability Benchmark, and Maintainability Benchmark. The benchmark results

will be presented in a table similar to Table 1. Using the table, all the traditional software quality metrics under investigation will

be ranked in terms of how well the given metrics can estimate the quality of a web-based system.

Table 1: Format for Benchmark Result

Metrics Functionality

(Sore)

Reliability

(Score)

Usability

(Score)

Efficiency

(Score)

...

Metric 1 0.0 0.0 0.0 0.0 ...

Metric 2 0.0 0.0 0.0 0.0 ...

...

...

Metrics N

340

Proceedings of the iSTEAMS Multidisciplinary Cross-Border Conference
University of Professional Studies, Accra Ghana 2016

6. DISCUSSION AND FINDINGS

The expected outcome of this research is that it will establish a method to determine the degree of suitability of traditional software

quality metrics in the evaluation of web-based systems. This study will contribute to researchers and software engineering

practitioners in the area of web engineering with a systematic, unbiased and scientific evaluation of software metrics. Software

metrics selection will be made easier.

The preliminary findinds that may require further investigations are as follows:

i. Most web-based systems were not designed to meet any specific quality standard

ii. Very few web-based system developers are aware that there are numerous web metrics

iii. There are few unified metric tools for collecting software metrics for web-based systems

7. CONCLUDING REMARKS

This paper has described the research concept, methodology and expected result of a proposed research that entails the

benchmarking of traditional software quality metrics on web-based systems. The research seeks to solve the problem of how best to

evaluate the quality of web-based systems using existing traditional software quality metrics instead of the current haphazard metric

development and selection practice.

Through the analysis of the research problem, the proposed methodology is expected to yield results that will demonstrate that the

objectives are reached. The proposed method, when implemented will provide insight into which traditional software metrics is best

suited for web-based systems. The implication of the expected result (ranked metrics) is that software developers can easily choose

which benchmark to use and which to ignore. Future metrics can also be subjected to this benchmarking method to rightly determine

the relative ranking to the metrics that will be ranked in this research.

7.1 Future work
Our future work will involve the full implementation of the TSQM benchmark in line with the objectives presented in this paper.

There are several different directions that future work in this area can continue. Firstly, further work is required in the area of

benchmarking web metrics. This work could extend the current research. Secondly, work needs to be done to develop a system that

will make it easy for web-based system developers to adhere to standards. They need to be aware that these standards exists and if

possible have a simple tool to check the adherence level of software projects. Finally, this study did not cover metrics for Agile

methods considering the trend of creative thinking (Crawford, Barra, Soto, Misra, & Monfroy, 2013). Quality evaluation remains

important, therefore new methods need to be evolved to accommodate the design methodology.

341

Proceedings of the iSTEAMS Multidisciplinary Cross-Border Conference
University of Professional Studies, Accra Ghana 2016

REFERENCES

1. Abrahão, S., Insfran, E., & Fernandez, A. (2014). Designing Highly Usable Web Applications.

2. Al-Kilidar, H., Cox, K., & Kitchenham, B. (2005). The use and usefulness of the ISO/IEC 9126 quality standard. Paper

presented at the Empirical Software Engineering, 2005. 2005 International Symposium on.

3. Andreasen, M. S., Nielsen, H. V., Schrøder, S. O., & Stage, J. (2015). Usability in open source software development:

Opinions and practice. Information technology and control, 35(3).

4. Basili, V. R., Briand, L. C., & Melo, W. L. (1996). A validation of object-oriented design metrics as quality indicators.

Software Engineering, IEEE Transactions on, 22(10), 751-761.

5. Blackburn, S. M., Garner, R., Hoffmann, C., Khang, A. M., McKinley, K. S., Bentzur, R., et al. (2006). The DaCapo

benchmarks: Java benchmarking development and analysis. Paper presented at the ACM Sigplan Notices.

6. Boehm, B. W., Brown, J. R., & Lipow, M. (1976). Quantitative evaluation of software quality. Paper presented at the

Proceedings of the 2nd international conference on Software engineering.

7. Bouwers, E., Deursen, A. v., & Visser, J. (2014). Towards a catalog format for software metrics. Paper presented at the

Proceedings of the 5th International Workshop on Emerging Trends in Software Metrics.

8. Brajnik, G. (2001). Towards valid quality models for websites. Paper presented at the Proceedings of the 7th Conference

on Human Factors and the Web.

9. Brown, J. R., & Goolsbee, A. (2000). Does the internet make markets more competitive? : National Bureau of Economic

Research.

10. Calero, C., Ruiz, J., & Piattini, M. (2005). Classifying web metrics using the web quality model. Online Information

Review, 29(3), 227-248.

11. Castro, R. u. G. ı. (2008). Benchmarking Semantic Web technology. Universidad Polit´ecnica de Madrid.

12. Chauhan, R., Singh, R., Saraswat, A., Joya, A. H., & Gunjan, V. K. (2014). Estimation of Software Quality using Object

Oriented Design Metrics. International Journal of Innovative Research in Computer and Communication Engineering,

2(1), 2581-2586.

13. Chauhan, V., Gupta, D. L., & Dixit, S. (2014). Role of Software Metrics to Improve Software Quality. Complexity, 2(3),

6.

14. Chhabra, J. K., & Gupta, V. (2010). A survey of dynamic software metrics. Journal of computer science and technology,

25(5), 1016-1029.

15. Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object oriented design. Software Engineering, IEEE

Transactions on, 20(6), 476-493.

16. Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., & Sears, R. (2010). Benchmarking cloud serving systems with

YCSB. Paper presented at the Proceedings of the 1st ACM symposium on Cloud computing.

17. Crawford, B., Barra, C. L. d. l., Soto, R., Misra, S., & Monfroy, E. (2013). Creative Thinking in eXtreme Programming.

18. Dhyani, D., Ng, W. K., & Bhowmick, S. S. (2002). A survey of Web metrics. ACM Computing Surveys (CSUR), 34(4),

469-503.

19. Endres, A., & Rombach, D. (2003). Empirical Software Engineering: A Handbook of Observations, Laws and Theories.

Harlow, UK: Addison-Wesley.

20. Fernando, T., Fernando, M., Senevirathne, A., Amarasinghe, N., Indraraj, D., & Kodagoda, N. (2012). Metric Based Code

Analyzing ToolT.

21. Fitzpatrick, R. (1999). A Process for Appraising Commercial Usability Evaluation Methods, Human-Computer

Interaction: Ergonomics and User Interfaces. Paper presented at the HCI International.

22. Franch, X., & Carvallo, J. P. (2003). Using quality models in software package selection. Software, IEEE, 20(1), 34-41.

23. Gafni, R. (2008). Framework for quality metrics in mobile-wireless information systems. Interdisciplinary Journal of

Information, Knowledge, and Management, 3, 23-38.

24. García-Castro, R. (2008). Benchmarking Semantic Web Technology. Informatica.

25. García-Castro, R., & Gómez-Pérez, A. (2010). Interoperability results for Semantic Web technologies using OWL as the

interchange language. Web semantics: science, services and Agents on the World Wide Web, 8(4), 278-291.

26. Ginige, A., & Murugesan, S. (2001). Web engineering: An introduction. MultiMedia, IEEE, 8(1), 14-18.

27. Gupta, N., Goyal, D., & Goyal, M. (2015). A hierarchical model for object-oriented design quality assessment.

International Journal of Advances in Engineering Sciences, 5(3), 1-6.

28. Hall, M. A., & Holmes, G. (2003). Benchmarking attribute selection techniques for discrete class data mining. Knowledge

and Data Engineering, IEEE Transactions on, 15(6), 1437-1447.

29. Heuser, L. (2004). The real world or Web engineering? Web Engineering (pp. 1-5): Springer.

30. Higo, Y., Saitoh, A., Yamada, G., Miyake, T., Kusumoto, S., & Inoue, K. (2011). A pluggable tool for measuring software

metrics from source code. Paper presented at the Software Measurement, 2011 Joint Conference of the 21st Int'l

Workshop on and 6th Int'l Conference on Software Process and Product Measurement (IWSM-MENSURA).

31. Jain, S., Srivastava, V., & Katiyar, P. (2014). Integration of Metric Tools for Software Testing. International Journal of

Enhanced Research in Science Technology & Engineering, ISSN, 2319-7463.

32. Jones, C. (2010). Software Engineering Best Practices: Lessons from Successful Projects in the Top Companies: McGraw-

Hill Companies.

33. Jones, C. (2014a). The Mess of Software Metrics Retrieved from http://namcookanalytics.com/mess-software-metrics/

342

Proceedings of the iSTEAMS Multidisciplinary Cross-Border Conference
University of Professional Studies, Accra Ghana 2016

34. Jones, C. (2014b). Sources of software benchmarks. Retrieved from http://namcookanalytics.com/wp-

content/uploads/2013/07/SOURCES-OF-SOFTWARE-BENCHMARKS-24.pdf

35. Kavindra, K. S., Praveen, K., & Jitendra, M. (2014). Implementation of a Model for Websites Quality Evaluation-DU

Website. International Journal of Innovations & Advancement in Computer Science IJIACS, 3(1).

36. Kitchenham, B., Linkman, S., & Law, D. (1997). DESMET: a methodology for evaluating software engineering methods

and tools. Computing & Control Engineering Journal, 8(3), 120-126.

37. Lincke, R., Lundberg, J., & Löwe, W. (2008). Comparing software metrics tools. Paper presented at the Proceedings of

the 2008 international symposium on Software testing and analysis.

38. Lokhande, R. N. (2012). Software Engineering Metrics: Introduction.

39. Maxwell, K. D., & Forselius, P. (2000). Benchmarking software development productivity. Software, IEEE, 17(1), 80-88.

40. Mayo, K. A., Wake, S. A., & Henry, S. M. (1990). Static and Dynamic Software Quality Metric Tools.

41. Mendes, E. (2005). A systematic review of Web engineering research. Paper presented at the Empirical Software

Engineering, 2005. 2005 International Symposium on.

42. Mendes, E., Counsell, S., & Mosley, N. (2005). Towards a taxonomy of hypermedia and web application size metrics Web

Engineering (pp. 110-123): Springer.

43. Mills, E. E. (1988). Software metrics: DTIC Document.

44. Mills, E. E., & Shingler, K. H. (1988). Software Metrics-SEI Curriculum Module SEI-CM-12-1.1.

45. Nourie, D. (2006). Java Technologies for Web Applications. Java. Retrieved from

http://www.oracle.com/technetwork/articles/java/webapps-1-138794.html

46. Novak, J., & Rakić, G. (2010). Comparison of software metrics tools for: net. Paper presented at the Proc. of 13th

International Multiconference Information Society-IS, Vol A.

47. Odlyzko, A. M. (2003). Internet traffic growth: Sources and implications. Paper presented at the ITCom 2003.

48. Olsina, L. (1999). Web-site quality evaluation method: a case study on museums. Paper presented at the Proceedings of the

ICSE.

49. Olsina, L., & Rossi, G. (2000). Web Engineering: A Quantitative Methodology for Quality Evaluation and Comparison of

Web Applications. The Electonic Journal of the Argentine Society for Informatics and Operations Research, 3(1).

50. Olsina, L., & Rossi, G. (2002). Measuring Web application quality with WebQEM. Ieee Multimedia(4), 20-29.

51. Peacekeeper. from http://peacekeeper.futuremark.com/run.action

52. Pereira, J. L., Koski, S., Hanson, J., Bruera, E. D., & Mackey, J. R. (2000). Internet usage among women with breast

cancer: an exploratory study. Clinical breast cancer, 1(2), 148-153.

53. Rentrop, J. (2006). Software Metrics as Benchmarks for Source Code Quality of Software Systems. Universiteit van

Amsterdam.

54. Ruhe, M., Jeffery, R., & Wieczorek, I. (2003). Using web objects for estimating software development effort for web

applications. Paper presented at the Software Metrics Symposium, 2003. Proceedings. Ninth International.

55. Runapongsa, K., Patel, J. M., Jagadish, H., & Al-Khalifa, S. (2002). The Michigan Benchmark: A microbenchmark for

XML query processing systems. Paper presented at the EEXTT.

56. Schackmann, H., Jansen, M., Lischkowitz, C., & Lichter, H. (2009). QMetric-a metric tool suite for the evaluation of

software process data. Paper presented at the ICSE Companion.

57. Shaik, A., & Reddy, K. (2012). Object oriented software metrics and quality assessment: Current state of the art.

International Journal of Computer Applications, 37(11).

58. Sim, S. E., Easterbrook, S., & Holt, R. C. (2003). Using benchmarking to advance research: A challenge to software

engineering. Paper presented at the Proceedings of the 25th International Conference on Software Engineering.

59. Sołtysik-Piorunkiewicz, A. (2015). Web technology in mobile organization management: Innowacje w zarządzaniu i

inżynierii produkcji, Opole: PTZP.

60. Sommerville, I. (2011). Software Engineering (9th ed.): Addison-Wesley.

61. SPEC. (2009). SPEC Web 2009. from Standard Performance Evaluation Corporation: https://www.spec.org/web2009/

62. Spinellis, D. (2005). Tool writing: A forgotten art? IEEE Software, 22(4), 9–11.

63. Srinivasan, K., & Devi, T. (2014). Software Metrics Validation Methodologies in Software Engineering. International

Journal of Software Engineering & Applications, 5(6), 87.

64. Tegarden, D. P., Sheetz, S. D., & Monarchi, D. E. (1992). Effectiveness of traditional software metrics for object-oriented

systems. Paper presented at the System Sciences, 1992. Proceedings of the Twenty-Fifth Hawaii International Conference

on.

65. Turan, M. (2015). Integrating Software Metrics with UML Class Diagrams. Lecture Notes on Software Engineering, 3(3),

220.

66. Vorhies, D. W., & Morgan, N. A. (2005). Benchmarking marketing capabilities for sustainable competitive advantage.

Journal of marketing, 69(1), 80-94.

67. Zeiss, B., Vega, D., Schieferdecker, I., Neukirchen, H., & Grabowski, J. (2007). Applying the iso 9126 quality model to

test specifications. Software Engineering, 15(6), 231-242.

